【题目】小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.![]()
参考答案:
【答案】24﹣8 ![]()
【解析】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,![]()
由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,
∴Rt△APM中,MP=8,故DQ=8=OG,
∴BQ=12﹣8=4,
由BQ∥CG可得,△ABQ∽△ACG,
∴
=
,即
=
,
∴CG=12,OC=12+8=20,
∴C(20,0),
又∵水流所在抛物线经过点D(0,24)和B(12,24),
∴可设抛物线为y=ax2+bx+24,
把C(20,0),B(12,24)代入抛物线,可得
,解得
,
∴抛物线为y=﹣
x2+
x+24,
又∵点E的纵坐标为10.2,
∴令y=10.2,则10.2=﹣
x2+
x+24,
解得x1=6+8
,x2=6﹣8
(舍去),
∴点E的横坐标为6+8
,
又∵ON=30,
∴EH=30﹣(6+8
)=24﹣8
.
所以答案是:24﹣8
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,OE,OD分别平分∠AOC和∠BOC,
(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度数;
(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;
(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明学了有理数的乘方后,知道23=8,25=32,他问老师,有没有20,2﹣3,如果有,等于多少?老师耐心提示他:25÷23=4,25﹣3=4,即25÷23=25﹣3=22=4,…“哦,我明白了了,”小明说,并且很快算出了答案,亲爱的同学,你想出来了吗?
(1)请仿照老师的方法,推算出20,2﹣3的值.
(2)据此比较(﹣3)﹣2与(﹣2)﹣3的大小.(写出计算过程)
-
科目: 来源: 题型:
查看答案和解析>>【题目】先阅读下列材料,然后解答问题.
探究:用的幂的形式表示aman的结果(m、为正整数).
根据乘方的意义,aman=
=am+n.(1)请根据以上结论填空:36×38= ,52×53×57= ,(a+b)3(a+b)5= ;
(2)仿照以上的分析过程,用的幂的形式表示(am)n的结果(提示:将am看成一个整体).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知多项式x3﹣3xy2﹣4的常数是a,次数是b.
(1)则a=_____,b=_____;并将这两数在数轴上所对应的点A、B表示出来;
(2)数轴上在B点右边有一点C到A、B两点的距离之和为11,求点C在数轴上所对应的数;
(3)在数轴上是否存在点P,使P到A、B、C的距离和等于12?若存在,求点P对应的数;若不存在,请说明理由.
(4)在数轴上是否存在点P,使P到A、B、C的距离和最小?若存在,求该最小值,并求此时P点对应的数;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.

(1)求证:△ABC≌△AED;
(2)当∠B=140°时,求∠BAE的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某长方形广场的四个角都有一个半径相同的四分之一圆形的草地,若圆形的半径为x米,长方形长为a米,宽为b米
(1)分别用代数式表示草地和空地的面积;
(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数)

相关试题