【题目】在平面直角坐标系中B(3,2),BC⊥y轴于C,BA⊥x轴于A,点E在线段AB上从B向A以每秒1个单位的速度运动,运动时间为t秒(0<t<2).将BE沿BD折叠,使E点恰好落在BC上的F处.
(1)如图1,若E为AB的中点,请直接写出F、D两点的坐标:F( , ) D( , )
(2)如图1,连接CD,在(1)的条件下,求证:CD=FD.![]()
(3)如图2,在E点运动的同时,M点在OC上从C向O运动,N点在OA上从A向O运动,M的运动速度为每秒3个单位,N的运动速度为每秒a个单位.在运动过程中,△CMF能与△ANE全等吗?若能,求出此时a与t的值,若不能,请说明理由.![]()
参考答案:
【答案】
(1)2;2;1;0
(2)
解:如图1,过点D作DG⊥BC于G,
由折叠得,DE=DF,∠BED=∠BFD,
∴∠AED=DFC,
在△AED和△GFD中
,
∴△AED≌△GFD,
∴GF=AE=1,
∵CF=2,
∴CG=1,
∴CG=FG,
∵DG⊥CG,
∴CD=FD
![]()
(3)
解:能全等,即:△CMF≌△AEN,
理由:
∵M点在OC上从C向O运动,N点在OA上从A向O运动,M的运动速度为每秒3个单位,N的运动速度为每秒a个单位,点E在线段AB上从B向A以每秒1个单位的速度运动,
∴CM=3t,AN=at,BE=t,
∴AE=2﹣t,
∵将BE沿BD折叠,使E点恰好落在BC上的F处,
∴BF=BE=t,
∴CF=BC﹣BF=3﹣t,
∵BF=BE,BC≠AB,
∴AE=CF,
∵△CMF与△ANE全等
∴△CMF≌△AEN,
∴CM=AE,CF=AN,
∴3t=2﹣t,3﹣t=at,
∴t=
,a=5.
【解析】解:(1)∵四边形ABCD是矩形,且B(3,2),
∴OA=BC=3,OC=AB=2,
∵E为AB的中点,
∴AE=BE=1,
由折叠得,BF=BE=1,
∴CF=2,
∴F(2,2),
如图1,
过点D作DG⊥BC于G,
由折叠得,DE=DF,∠BED=∠BFD,
∴∠AED=DFC,
在△AED和△GFD中
,
∴△AED≌△GFD,
∴AD=DG=OC=2,
∴OD=1,
∴D(1,0),
所以答案是:2,2,1,0;
-
科目: 来源: 题型:
查看答案和解析>>【题目】每年11月的最后一个星期四是感恩节,小龙调查了初三年级部分同学在感恩节当天将以何种方式表达感谢帮助过自己的人.他将调查结果分为如下四类:A类﹣﹣当面致谢;B类﹣﹣打电话;C类﹣﹣发短信息或微信;D类﹣﹣写书信.他将调查结果绘制成如图不完整的扇形统计图和条形统计图:

请你根据图中提供的信息完成下列各题:
(1)补全条形统计图;
(2)在A类的同学中,有3人来自同一班级,其中有1人学过主持.现准备从他们3人中随机抽出两位同学主持感恩节主题班会课,请你用树状图或表格求出抽出的两人都没有学过主持的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=
的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=
的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列关于x的单项式,探究其规律:2x,4x2 , 6x3 , 8x4 , 10x5 , 12x6 , …,按照上述规律,第2016个单项式是( )
A.2016x2015
B.2016x2016
C.4032x2015
D.4032x2016 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.并求△ABC的面积。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,点E在AB上,且BE=
AB,点F是BC的中点,点G是DE的中点,延长DF,与AB的延长线交于点H.以下四个结论:
①FG=
EH;②△DFE是直角三角形;③FG=
DE;④DE=EB+BC.
其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以菱形AOBC的顶点O为原点,对角线OC所在直线为x轴建立平面直角坐标系,若OB=5,点C的坐标为(8,0),则点A的坐标为

相关试题