【题目】如图,在四边形ABCD中,点E为CD的中点,连接AE延长交BC的延长线于点F,连接BE,AE=FE,BE⊥AF.
![]()
(1)求证:△AED≌△FEC
(2)求证:AB=BC+AD
参考答案:
【答案】(1)见解析;(2)见解析
【解析】
(1)先利用中点证明DE=CE,再用SAS证明△AED≌△FEC即可;
(2)由AE=FE, BE⊥AF可知BE垂直平分AF,则有AB=FB,利用全等可得出AD=FC,则结论可证.
证明:(1)∵点E为CD的中点
∴DE=CE
在△AED与△FEC中,
∴△AED≌△FEC(SAS)
(2)∵AE=FE, BE⊥AF
∴BE垂直平分AF
∴AB=FB
由(1)得:△AED≌△FEC
∴AD=FC
∴AB=FB =BC+FC =BC+AD
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,海中有一小岛P,在距小岛P的
海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?
-
科目: 来源: 题型:
查看答案和解析>>【题目】将图1,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.

(1)如图2,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图2中画出折痕;
(2)如图3,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是 ;
(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=10°,∠B=50°,求∠C的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠A=60°,点D是BC边的中点,DE⊥BC,∠ABC的平分线BF交DE于△ABC内一点P,连接PC.

(1)若∠ABP=32°,求∠ACP的度数;
(2)若∠ACP=m°,∠ABP=n°,请直接写出m,n满足的关系式:________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店经销一种成本为每千克
元的水产品,据市场分析,若按每千克
元销售,一个月能售出
,销售单价每涨(或跌)
元,月销售量就减少(或增加)
,解答以下问题:(1)当销售单价定位每千克
元时,计算月销售量和月销售利润;(2)商店想在月销售成本不超过
元的情况下,使得月销售利润达到
元,销售单价应为多少?(3)商店要使得月销售利润达到最大,销售单价应为多少?此时利润为多少?
相关试题