【题目】在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1 、y2 (km), y1 、y2 与x的函数关系如图所示.
![]()
(1)填空:A、C两港口间的距离为_______km,
_______;
(2)求图中点P的坐标;
(3)若两船的距离不超过8km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
参考答案:
【答案】(1)120,2;(2)(1,30);(3)
≤x≤
或
≤x≤![]()
【解析】
(1)由甲船行驶的函数图象可以看出,甲船从A港出发,0.5h后到达B港,ah后到达C港,又由于甲船行驶速度不变,则可以求出a的值;
(2)分别求出0.5h后甲乙两船行驶的函数表达式,联立即可求解;
(3)将该过程划分为0≤x≤0.5、0.5<x≤1、x>1三个范围进行讨论,得到能够相望时x的取值范围.
解:(1)A、C两港口间距离s=30+90=120(km),
又由于甲船行驶速度不变,
故30÷0.5=60(km/h),
则a=2(h).
(2)由点(3,90)求得,y2=30x.
当0.5<x≤2时,设解析式为y1=ax+c,
由点(0.5,0),(2,90)则,![]()
解得:![]()
∴y1=60x-30,
当y1=y2时,60x-30=30x,解得,x=1.
此时y1=y2=30.
所以点P的坐标为(1,30).
(3)))①当x≤0.5时,依题意,(-60x+30)+30x≤8.解得,x≥
.不合题意.
②当0.5<x≤1时,依题意,30x-(60x-30)≤8
解得,x≥
.所以
≤x≤1.
③当1<x≤2时,依题意,(60x-30)-30x≤8
解得,x≤
.所以1<x≤![]()
④当2<x≤3时,甲船已经到了而乙船正在行驶,
∵90-30x≤8,解得x≥
,
所以,当
≤x≤3,甲、乙两船可以相互望见;
综上所述,当
≤x≤
或
≤x≤
时, 甲、乙两船可以相互望见.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数
(
,
、
、
为常数)的图象如图所示,下列
个结论:①
;②
;③
;④
;⑤
为常数,且
.其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数
,
,
是常数,且
中的
与
的部分对应值如下表所示,则下列结论中,正确的个数有( )









;
当
时,
;
当
时,
的值随
值的增大而减小;
方程
有两个不相等的实数根.A. 4个 B. 3个 C. 2个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,抛物线
与
轴交于点
,顶点为点
,点
与点
关于抛物线的对称轴对称.
求直线
的解析式;
点
在抛物线上,且点
的横坐标为
.将抛物线在点
,
之间的部分(包含点
,
)记为图象
,若图象
向下平移
个单位后与直线
只有一个公共点,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
与
轴交于
,
两点(点
在
轴的正半轴上),与
轴交于点
,矩形
的一条边
在线段
上,顶点
,
分别在线段
,
上.
求点
,
,
的坐标;
若点
的坐标为
,矩形
的面积为
,求
关于
的函数表达式,并指出
的取值范围;
当矩形
的面积
取最大值时,①求直线
的解析式;②在射线
上取一点
,使
,若点
恰好落在该抛物线上,则
________. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司购进某种水果的成本为
元/千克,经过市场调研发现,这种水果在未来
天的销售价格
(元/千克)与时间
(天)之间的函数关系式为
,且其日销售量
(千克)与时间
(天)的关系如下表:时间
天





…
日销售量
千克





…
已知
与
之间的变化规律符合一次函数关系,试求在第
天的日销售量是多少?
问哪一天的销售利润最大?最大日销售利润为多少?
在实际销售的前
天中,公司决定每销售
千克水果就捐赠
元利润
给“精准扶贫”对象.现发现:在前
天中,每天扣除捐赠后的日销售利润随时间
的增大而增大,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】(模型建立)
(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.
求证:△BEC≌△CDA;
(模型应用)
(2)① 已知直线l1:y=
x+8与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45
至直线l2,如图2,求直线l2的函数表达式;② 如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,-6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=-3x+6上的动点且在y轴的右侧.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.

相关试题