【题目】在数学探究课上,老师出示了这样的探究问题,请你一起来探究:
已知:C是线段AB所在平面内任意一点,分别以AC,BC为边,在AB同侧作等边三角形ACE和BCD,联结AD,BE交于点P.
(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是: . ![]()
(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.![]()
(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.
参考答案:
【答案】
(1)解:AD=BE
(2)解:AD=BE成立.
证明:∵△ACE和△BCD是等边三角形
∴EC=AC,BC=DC,
∠ACE=∠BCD=60°,
∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;
在△ECB和△ACD中,
,
∴△ECB≌△ACD(SAS),
∴BE=AD
(3)解:∠APE不随着∠ACB的大小发生变化,始终是60°.
如图2,设BE与AC交于Q,
由(2)可知△ECB≌△ACD,
∴∠BEC=∠DAC
又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°
∴∠APQ=∠ECQ=60°,即∠APE=60°.
【解析】(1)∵△ACE、△CBD均为等边三角形,
∴AC=EC,CD=CB,∠ACE=∠BCD,
∴∠ACD=∠ECB;
在△ACD与△ECB中,
,
∴△ACD≌△ECB(SAS),
∴AD=BE,
所以答案是AD=BE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正方形ABCD的三个顶点A(﹣4,0),B(0,0),C(0,4),则第四个顶点D的坐标为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】命题“同旁内角的平分线互相垂直”是命题(填“真”或“假”).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2 , 连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算x7÷x4的结果等于 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小强在河的一边,要测河面的一只船B与对岸码头A的距离,他的做法如下:

①在岸边确定一点C,使C与A,B在同一直线上;
②在AC的垂直方向画线段CD,取其中点O;
③画DF⊥CD使F、O、A在同一直线上;
④在线段DF上找一点E,使E与O、B共线.
他说测出线段EF的长就是船B与码头A的距离.他这样做有道理吗?为什么? -
科目: 来源: 题型:
查看答案和解析>>【题目】一项工程,甲乙两公司合作,12天可以完成,如果甲乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,求甲乙两公司单独完成这项工程,各需多少天?
相关试题