【题目】问题背景:
小红同学在学习过程中遇到这样一道计算题“计算4×2.112-4×2.11×2.22+2.222”,她觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!
获取新知:
请你和小红一起完成崔老师提供的问题:
(1)填写下表:
x=-1,y=1 | x=1,y=0 | x=3,y=2 | x=2,y=-1 | x=2,y=3 | |
A=2x-y | -3 | 2 | 4 | 5 | 1 |
B=4x2-4xy+y2 | 9 | 4 | 16 |
(2)观察表格,你发现A与B有什么关系?
解决问题:
(3)请利用A与B之间的关系计算:4×2.112-4×2.11×2.22+2.222.
参考答案:
【答案】(1)25 ,1 ;(2)A2=B 即(2x-y)2=4x2-4xy+y2 ;(3)4
【解析】
(1)将x和y的值分别代入B=4x2-4xy+y2中求出B的值即可得出答案;
(2)根据(1)中补全的B的值,观察A和B的关系即可得出答案;
(3)根据(2)得到的公式将x=2.11,y=2.22代入即可得出答案.
解:(1)当x=2,y=-1时,B=4x2-4xy+y2=
=25,
当x=2,y=3时,B=4x2-4xy+y2=
=1;
(2)A2=B 即(2x-y)2=4x2-4xy+y2
(3)原式=(2×2.11-2.22)2
=4
-
科目: 来源: 题型:
查看答案和解析>>【题目】有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:

(1)这8筐白菜中,最接近25千克的那筐白菜为______千克;
(2)以每筐25千克为标准,这8筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2015湖州)如图,已知抛物线C1:
和C2:
都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是____________________和__________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个长方形运动场被分隔成ABABC共5个区,A区是边长为a m的正方形,C区是4个边长为b m的小正方形组成的正方形.

(1)列式表示每个B区长方形场地的周长,并将式子化简;
(2)列式表示整个长方形运动场的周长,并将式子化简;
(3)如果a=40 m,b=20 m,求整个长方形运动场的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在透明纸面上有一数轴(如图1),折叠透明纸面.
(1)若表示1的点与表示-1的点重合,则表示-7的点与表示 的点重合;
(2)若表示-2的点与表示6的点重合,回答以下问题:
①表示12的点与表示 的点重合;
②如图2,若数轴上AB两点之间的距离为2020(点A在点B的左侧),且AB两点经折叠后重合,则AB两点表示的数分别是 .
(3)如图3,若m和n表示的点C和点D经折叠后重合(m>n),折痕与数轴的交点为折痕点.已知线段CD上两点P、Q (点P在点Q的左侧,PQ<CD),PQ=a.当线段PQ的端点与折痕点重合时,求PQ两点表示的数分别是多少?(用含m,n,a的代数式表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】给出下列算式




(1)观察上面一系列式子,猜想第五个式子?
(2)用含n的式子表示其规律(n为正整数)
(3)计算
的值,此时n是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】问题:探究一次函数y=kx+k+2(k是不为0常数)图象的共性特点,探究过程:小明尝试把x=-1代入时,发现可以消去k,竟然求出了y=2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k+2的图象一定经过定点(-1,2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把像这样的一次函数的图象定义为“点旋转直线”.已知一次函数y=(k+3)x+(k-1)的图象是“点旋转直线”
(1)一次函数y=(k+3)x+(k-1)的图象经过的定点P的坐标是__________.
(2)已知一次函数y=(k+3)x+(k-1)的图象与x轴、y轴分别相交于点A、B
①若△OBP的面积为3,求k值;
②若△AOB的面积为1,求k值.

相关试题