【题目】如图,P为正方形ABCD的边BC上一动点(P与B.C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M.
(1)求证:AP⊥BQ;
(2)若AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长。
![]()
参考答案:
【答案】(1)证明见解析;(2)MQ=
;(3)AM=
.
【解析】试题分析:(1)证明△ABP≌△BCQ,则∠BAP=∠CBQ,从而证明∠CBQ+∠APB=90°,进而得证;
(2)设MQ=MB=x,则MN=x﹣2.在直角△MBN中,利用勾股定理即可列方程求解;
(3)设AM=y,BN=BC=m+n,在直角△BNM中,MB=y+m+n,MN=MQ﹣QN=(y+m+n)﹣m=y+n,利用勾股定理即可求解.
试题解析:(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC,在△ABP和△BCQ中,∵AB=BC,∠ABC=∠C,BP=CQ,∴△ABP≌△BCQ,∴∠BAP=∠CBQ.
∵∠BAP+∠APB=90°,∴∠CBQ+∠APB=90°,∴∠BEP=90°,∴AP⊥BQ;
(2)解:∵正方形ABCD中,AB=3,BP=2CP,∴BP=2,由(1)可得NQ=CQ=BP=2,NB=3.
又∵∠NQB=∠CQB=∠ABQ,∴MQ=MB.
设MQ=MB=x,则MN=x﹣2.
在直角△MBN中,
,即
,解得:x=
,即MQ=
;
(3)∵BP=m,CP=n,由(1)(2)得MQ=BM,CQ=QN=BP=m,设AM=y,BN=BC=m+n,在直角△BNM中,MB=y+m+n,MN=MQ﹣QN=(y+m+n)﹣m=y+n,
,即
,则y=
,AM=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),菱形ABCD对角线AC、BD的交点O是四边形EFGH对角线FH的中点,四个顶点A、B、C、D分别在四边形EFGH的边EF、FG、GH、HE上.
(1)求证:四边形EFGH是平行四边形;
(2)如图(2)若四边形EFGH是矩形,当AC与FH重合时,已知
,且菱形ABCD的面积是20,求矩形EFGH的长与宽.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一元二次方程x2﹣4x+2=0根的情况是( )
A.没有实数根
B.只有一个实数根
C.有两个相等的实数根
D.有两个不相等的实数根 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知菱形ABCD,AB=5,对角线BD=8,作AE⊥BC于点E,CF⊥AD于点F,连接EF,求EF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图正方形ABCD的边长为4,E、F分别为DC、BC中点.
(1)求证:△ADE≌△ABF.
(2)求△AEF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(1)24+(-14)+(-16)+8;(3)
;(3)
;(4)
;(5)
;(6)
相关试题