【题目】如图,AD是△ABC的角平分线,以AD为弦的⊙O交AB、AC于E、F,已知EF∥BC.
(1)求证:BC是⊙O的切线;
(2)若已知AE=9,CF=4,求DE长;
(3)在(2)的条件下,若∠BAC=60°,求tan∠AFE的值及GD长.
![]()
参考答案:
【答案】(1)证明见解析(2)DE=6(3)
【解析】试题分析:(1)连接OD,由角平分线的定义得到∠1=∠2,得到
,根据垂径定理得到OD⊥EF,根据平行线的性质得到OD⊥BC,于是得到结论;
(2)连接DE,由
,得到DE=DF,根据平行线的性质得到∠3=∠4,等量代换得到∠1=∠4,根据相似三角形的性质即可得到结论;
(3)过F作FH⊥BC于H,由已知条件得到∠1=∠2=∠3=∠4=30°,解直角三角形得到FH=
DF=
×6=3,DH=3
,CH=
,根据三角函数的定义得到tan∠AFE=tan∠C=
;根据相似三角形到现在即可得到结论.
试题解析:(1)连接OD,
∵AD是△ABC的角平分线,
∴∠1=∠2,
∴
,
∴OD⊥EF,
∵EF∥BC,
∴OD⊥BC,
∴BC是⊙O的切线;
(2)连接DE,
∵
,
∴DE=DF,
∵EF∥BC,
∴∠3=∠4,
∵∠1=∠3,
∴∠1=∠4,
∵∠DFC=∠AED,
∴△AED∽△DFC,
∴
,即
,
∴DE2=36,
∴DE=6;
(3)过F作FH⊥BC于H,
∵∠BAC=60°,
∴∠1=∠2=∠3=∠4=30°,
∴FH=
DF=
=3,DH=3
,
∴CH=
,
∵EF∥BC,
∴∠C=∠AFE,
∴tan∠AFE=tan∠C=
;
∵∠4=∠2.∠C=∠C,
∴△ADC∽△DFC,
∴
,
∵∠5=∠5,∠3=∠2,
∴△ADF∽△FDG,
∴
,
∴
,即
,
∴DG=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB∥CD,∠ABC=90°,AD=CD+AB,∠BAC=45°,E是BC上一点,且∠DAE=45°,若BC=8,则△ADE面积为__.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是等边三角形ABC的高,点E是AD上的一个动点(点E不与点A重合),连接CE,将线段CE绕点E顺时针旋转60°得到EF,连接BF、CF.

(1)猜想:△CEF是 三角形;
(2)求证:AE=BF;
(3)若AB=4,连接DF,在点E运动的过程中,请直接写出DF的最小值 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫的惠农富农,老张在科技人员的指导下,改良柑橘品种,去年他家的柑橘喜获丰收,而且质优味美,客商闻讯前来采购,经协商:采购价y(元/吨)与采购量x(吨)之间的函数关系如图所示.

(1)求y与x之间的函数关系式;
(2)老张种植柑橘的成本是800元/吨,当客商采购量是多少时,老张在这次销售柑橘时获利最大?最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c交x轴于A(-4,0),B(1,0),交y轴于C点,且OC=2OB.

(1)求抛物线的解析式;
(2)在直线BC上找点D,使△ABD为以AB为腰的等腰三角形,求D点的坐标;
(3)在抛物线上是否存在异于B的点P,过P点作PQ⊥AC于Q,使△APQ与△ABC相似?若存在,请求出P点坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=
(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是( )
A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于
轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用实线条画出对称轴。

相关试题