【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
![]()
A. 36=15+21 B. 25=9+16 C. 13=3+10 D. 49=18+31
参考答案:
【答案】A
【解析】
题目中“三角形数”的规律为1、3、6、10、15、21…“正方形数”的规律为1、4、9、16、25…,根据题目已知条件:从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.可得出最后结果.
这些三角形数的规律是1,3,6,10,15,21,28,36,45,…,
且正方形数是这串数中相邻两数之和,
很容易看到:恰有15+21=36,
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).
(1)当t为何值时,射线OC与OD重合;
(2)当t为何值时,∠COD=90°;
(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法:(1)相反数是本身的数是正数;(2)两数相减,差小于被减数;(3)绝对值等于它相反数的数是负数;(4)倒数是它本身的数是1;(5)若
,则a=b;(6)没有最大的正数,但有最大的负整数.其中正确的个数( )A. 0 B. 1 C. 2 D. 3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).

(1)请直接写出点B关于点A对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南安边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向.回答下列问题:

(1)∠CBA的度数为 .
(2)求出这段河的宽(结果精确到1m,备用数据
≈1.41,
≈1.73. -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
①
; ②
; ③ 17-8÷(-2)+4×(—5) ;
④
;⑤ (﹣2)2×7﹣(﹣3)×6﹣|﹣5|;
⑥
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.
(1)求证:四边形ABEF是菱形;
(2)若AB=10,BF=16,AD=15, 则□ABCD 的面积是 .

相关试题