【题目】如图,已知∠MON=90,A是∠MON内部的一点,过点A作AB⊥ON,垂点为点B,AB=3厘米,OB=4厘米,动点E、F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动。设运动时间为t秒(t>0)。
(1)当t=1秒时,ΔEOF与ΔABO是否相似?请说明理由。
(2)在运动过程中,不论t取何值时,总有EF⊥OA,为什么?
(3)连接AF,在运动过程中,是否存在某一时刻t,使得SΔAEF=
S四边形ABOF ?若存在,请求出此时t的值;若不存在,请说明理由。
![]()
参考答案:
【答案】(1)△EOF∽△ABO(2)EF⊥OA(3)t1=
或t2=![]()
【解析】试题分析:(1)由
=
及∠MON=∠ABE=90°,可得出△EOF∽△ABO.
(2)证明Rt△EOF∽Rt△ABO,进而证明EF⊥OA.
(3)由已知S△AEF=
S四边形ABOF.得出S△FOE+S△ABE=
S梯形ABOF,从而可求出t的值.
试题解析:(1)∵t=1,
∴OE=1.5厘米,OF=2厘米,
∵AB=3厘米,OB=4厘米,
∴
,![]()
∵∠MON=∠ABE=90°,
∴△EOF∽△ABO.
(2)在运动过程中,OE=1.5t,OF=2t.
∵AB=3,OB=4.
∴
.
又∵∠EOF=∠ABO=90°,
∴Rt△EOF∽Rt△ABO.
∴∠AOB=∠EOF.
∵∠AOB+∠FOC=90°,
∴∠EOF+∠FOC=90°,
∴EF⊥OA.
(3)如图,连接AF,
![]()
∵OE=1.5t,OF=2t,
∴BE=4﹣1.5t
∴S△FOE=
OEOF=
×1.5t×2t=
t2,S△ABE=
×(4﹣1.5t)×3=6﹣
t,
S梯形ABOF=
(2t+3)×4=4t+6
∵S△AEF=
S四边形ABOF
∴S△FOE+S△ABE=
S梯形ABOF,
∴
t2+6﹣
t=
(4t+6),即6t2﹣17t+12=0,
解得t=
或t=
.
∴当t=
或t=
时,S△AEF=
S四边形ABOF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级两个班,各选派10名学生参加学校举行的“美丽绍兴乡土风情知识”大赛预赛各参赛选手的成绩如下:
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99.
通过整理,得到数据分析表如下:
班级
最高分
平均分
中位数
众数
方差
八(1)班
100
m
93
93
12
八(2)班
99
95
n
93
8.4
(1)求表中m、n的值;
(2)依据数据分析表,有同学说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有同学说(2)班的成绩更好请您写出两条支持八(2)班成绩好的理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点E在BC上,点F在CD上,连接AE、AF、EF,∠EAF=45°,BE=3,CF=4,则正方形的边长为__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.

(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=120°,求∠ACB的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】填空并填写理由:如图,AD∥BE,∠1=∠2,那么∠A与∠E相等吗?请完成解答过程:

解:∵AD∥BE(已知)
∠A=∠_____ (_________________)
又∵∠1=∠2 (______)
∴AC∥_____ (________________)
∴∠3=∠_____(两直线平行,内错角相等)
∴∠A=∠______ (_______)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在“端午”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:

(1)他们共去了几个成人,几个学生?
(2)请你帮助算算,小明用更省钱的购票方式是指什么?
相关试题