【题目】梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A,B两种品牌的龟苓膏粉共1000包.
(1)若小王按需购买A,B两种品牌龟苓膏粉共用22000元,则各购买多少包?
(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式;
(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本?(运算结果取整数)
参考答案:
【答案】(1)小王购买A,B两种品牌龟苓膏粉分别为600包,400包(2) y=-4x+20500(3) A品牌的龟苓膏粉每包定价不低于24元时才不亏本
【解析】
试题(1)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,根据题意列方程解出即可;
(2)根据题意,可得y=500+0.8×[20x+25(1000﹣x)],据此求出y与x之间的函数关系式即可.
(3)先求出小王购买A、B两种品牌龟苓膏粉分别为多少包,然后设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,所以125z+875(z+5)≥20000+8×1000,据此求出A品牌的龟苓膏粉每包定价不低于多少元时才不亏本即可.
试题解析:(1)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,则
,解得:
,∴小王购买A、B两种品牌龟苓膏粉分别为600包、400包;
(2)y=500+0.8×[20x+25(1000﹣x)]=500+0.8×[25000﹣5x]=500+20000﹣4x=﹣4x+20500,∴y与x之间的函数关系式是:y=﹣4x+20500;
(3)由(2),可得:20000=﹣4x+20500,解得x=125,∴小王购买A、B两种品牌龟苓膏粉分别为125包、875包,设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,∴125z+875(z+5)≥20000+8×1000,解得z≥23.625,∴A品牌的龟苓膏粉每包定价不低于24元时才不亏本.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)平面上有四个点A,B,C,D,按照以下要求作图:
①作直线AD;
②作射线CB交直线AD于点E;
③连接AC,BD交于点F;
(2)图中共有 条线段;
(3)若图中F是AC的一个三等分点,AF<FC,已知线段AC上所有线段之和为18,求AF长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知:DG⊥BC,AC⊥BC,FE⊥AB,∠1=∠2.
求证:CD⊥AB.
证明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直的定义)
∴DG∥AC( )
∴∠2=∠DCA( )
∵∠1=∠2(已知)
∴∠1= (等量代换)
∴ (同位角相等,两直线平行)
∴ =∠ADC( )
∵EF⊥AB(已知), ∴∠AEF=90°( ),∴∠ADC=90° ,
∴CD⊥AB(垂直的定义)

-
科目: 来源: 题型:
查看答案和解析>>【题目】仔细阅读下列材料.
“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.
例如:
=1÷4=0.25;
=
=8÷5=1.6;
=1÷3=
,反之,0.25=
=
;1.6=
=
=
.那么
,
怎么化成分数呢?解:∵
×10=3+
, ∴不妨设
=x,则上式变为10x=3+x,解得x=
,即
=
;∵
=
,设
=x,则上式变为100x=2+x,解得x=
,∴
=
=1+x=1+
=
⑴将分数化为小数:
=______,
=_______;⑵将小数化为分数:
=______,
=_______;⑶将小数
化为分数,需要写出推理过程. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠AOB=α°,∠COD在∠AOB内部且∠COD=β°.
(1)若α,β满足|α-2β|+(β-60)2=0,则①α= ;
②试通过计算说明∠AOD与∠COB有何特殊关系;
(2)在(1)的条件下,如果作OE平分∠BOC,请求出∠AOC与∠DOE的数量关系;
(3)若α°,β°互补,作∠AOC,∠DOB的平分线OM,ON,试判断OM与ON的位置关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠A=50°,BC=6,以BC为直径的半圆O与AB、AC分别交于点D、E,则图中阴影部分面积之和等于(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,MN为⊙O的直径,A、B是⊙O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是 .

相关试题