【题目】在数学课上,老师提出如下问题:已知:线段a,b(如图1).

求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为b.
小姗的作法如下:如图2,

(i)作线段BC=a;
(ii)作线段BC的垂直平分线MN交线段BC于点D;
(iii)在MN上截取线段DA=b,连接AB,AC.所以,△ABC就是所求作的等腰三角形.
老师说:“小姗的作法正确”.
请回答:得到△ABC是等腰三角形的依据是:


参考答案:

【答案】垂直平分线上的点到线段两个端点距离相等;有两条边相等的三角形是等腰三角形
【解析】解:由作法得MN垂直平分BC,则AB=AC.
所以答案是垂直平分线上的点到线段两个端点距离相等;有两条边相等的三角形是等腰三角形.
【考点精析】解答此题的关键在于理解线段垂直平分线的性质的相关知识,掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.

关闭