【题目】如图,AB是⊙O的切线,B为切点,圆心O在AC上,∠A=30°,D为
的中点.
(1)求证:AB=BC.
(2)试判断四边形BOCD的形状,并说明理由.![]()
参考答案:
【答案】解:(1)∵AB是⊙O的切线,
∴∠OBA=90°,∠AOB=90°﹣30°=60°.
∵OB=OC,
∴∠OBC=∠OCB,∠OCB=30°=∠A,
∴AB=BC.
(2)四边形BOCD为菱形,
理由如下:连接OD交BC于点M,
∵D是
的中点,
∴OD垂直平分BC.
在Rt△OMC中,
∵∠OCM=30°,
∴OC=2OM=OD
∴OM=MD,
∴四边形BOCD为菱形.![]()
【解析】(1)由AB是⊙O的切线,∠A=30°,易求得∠OCB的度数,继而可得∠A=∠OCB=30°,又由等角对等边,证得AB=BC;
(2)首先连接OD,易证得△BOD与△COD是等边三角形,可得OB=BD=OC=CD,即可证得四边形BOCD是菱形.
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】规定:正整数n的“H运算”是:①当n为奇数时,H=3n+13;②当n为偶数时,H=n
…(连续乘以
,一直算到H为奇数止).如:数3经过“H运算”的结果是22,经过2次“H运算”的结果为11,经过三次“H运算”的结果为46,那么257经2017次“H运算”得到的结果是( )A. 161 B. 1 C. 16 D. 以上答案均不正确
-
科目: 来源: 题型:
查看答案和解析>>【题目】古希腊数学家把数1,3,6,10,15,21,……叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1 ,第二个三角数形记为a 2 ,……,第n个三角形数记为an,计算a2-a1,a 3-a2……由此推算a 100-a 99 =________;a100=________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CA⊥AB,DB⊥AB,已知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:
①∠AOB=90°+
∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab.其中正确的是( )
A. ①② B. ③④ C. ①②④ D. ①③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,直径AB交弦ED于点G,EG=DG,⊙O的切线BC交DO的延长线于点C,F是DC与⊙O的交点,连结AF.
(1)求证:DE∥BC;
(2)若OD=1,CF=
, 求AF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为( )

A. 3cm2 B. 4cm2 C. 5cm2 D. 6cm2
相关试题