【题目】为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.
活动中测得的数据如下:
①小明的身高DC=1.5m
②小明的影长CE=1.7cm
③小明的脚到旗杆底部的距离BC=9cm
④旗杆的影长BF=7.6m
⑤从D点看A点的仰角为30°
请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据
≈1.414.
≈1.732)![]()
参考答案:
【答案】解:情况一,选用①②④,
∵AB⊥FC,CD⊥FC,
∴∠ABF=∠DCE=90°,
又∵AF∥DE,
∴∠AFB=∠DEC,
∴△ABF∽△DCE,
∴
,
又∵DC=1.5m,FB=7.6m,EC=1.7m,
∴AB=6.7m.
即旗杆高度是6.7m;
情况二,选①③⑤.
过点D作DG⊥AB于点G.
∵AB⊥FC,DC⊥FC,
∴四边形BCDG是矩形,
∴CD=BG=1.5m,DG=BC=9m,
在直角△AGD中,∠ADG=30°,
∴tan30°=
,
∴AG=3
,
又∵AB=AG+GB,
∴AB=3
+1.5≈6.7m.
即旗杆高度是6.7m.![]()
【解析】分①②④和①③⑤两种情况,在第一种情况下证明△ABF∽△DCE,根据相似三角形的对应边的比相等即可求解;在第二种情况下,过点D作DG⊥AB于点G,在直角△AGD中利用三角函数求得AG的长,则AB即可求解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠BAC=90°,AC=AB,点D为BC边上的一个动点(点D不与B,C重合),以AD为边作等腰直角△ADE,∠DAE=90°,连接CE.
(1)求证:△ABD≌△ACE.
(2)试猜想线段BD,CD,DE之间的等量关系,并证明你的猜想.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1)将长方形纸片ABCD的一边CD沿着CQ向下折叠,使点D落在边AB上的点P处.
(1)试判断线段CQ与PD的关系,并说明理由;
(2)如图(2),若AB=CD=5,AD=BC=3.求AQ的长;
(3)如图(2),BC=3,取CQ的中点M,连接MD,PM,若MD⊥PM,求AQ(AB+BC)的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1)在△ABC中,∠C=90°,AB=25cm,BC=15cm,若动点P从点C开始沿着C→B→A→C的路径运动,且速度为每秒5cm,设点P运动的时间为t秒.
(1)点P运动2秒后,求△ABP的面积;
(2)如图(2),当t为何值时,BP平分∠ABC;
(3)当△BCP为等腰三角形时,直接写出所有满足条件t的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,已知反比例函数y=
的图象经过点A,点O是坐标原点,OA=2且OA与x轴的夹角是60°. 
(1)试确定此反比例函数的解析式;
(2)将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)

-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值
(1)(
-1)
,其中x的值从不等式
的正整数解中选取.
÷(a+2-
),其中a2+3a-1=0.
相关试题