【题目】解方程:
(1)x2﹣4x﹣4=0;
(2)x(x﹣2)=15.
参考答案:
【答案】
(1)解:△=b2﹣4ac=(﹣4)2﹣4×1×(﹣4)=32,
=2±
,
所以x1=2+
,x2=2﹣
;
(2)解:原方程可变形为x2﹣2x﹣15=0,
(x﹣5)(x+3)=0,
x﹣5=0或x+3=0,
所以x1=5,x2=﹣3.
【解析】(1)先计算判别式的值,然后利用求根公式解方程。
(2)先把方程化为一般式,然后利用因式分解法解方程.
【考点精析】根据题目的已知条件,利用公式法和因式分解法的相关知识可以得到问题的答案,需要掌握要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之;已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为( )

A.
B.3
C.3
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=
(x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则
= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.
(1)如果∠A=80°,求∠BPC的度数;
(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.
(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.


-
科目: 来源: 题型:
查看答案和解析>>【题目】某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长为6m、8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形.求扩建后的等腰三角形花圃的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.
(1)该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.

(2)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(问题背景)
(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;
(简单应用)
(2)如图2, AP、CP分别平分∠BAD. ∠BCD,若∠ABC=46°,∠ADC=26°,求∠P的度数;
(问题探究)
(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.
(拓展延伸)
(4) ①在图4中,若设∠C=α,∠B=β,∠CAP=
∠CAB,∠CDP=
∠CDB,试问∠P与∠C、∠B之间的数量关系为: (用α、β表示∠P);②在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE, 猜想∠P与∠B、∠D的关系,直接写出结论.


相关试题