【题目】问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:△EFC的面积
__________,△ADE的面积
______________.
探究发现(2)在(1)中,若BF=m,FC=n,DE与BC间的距离为
.请证明
.
拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为3、7、5,试利用(2)中的结论求△ABC的面积.
![]()
参考答案:
【答案】(1)9,1;(2)证明见解析;(3)27.
【解析】
试题分析:本题利用了平行四边形、三角形的面积公式,还利用了平行四边形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理的推论、全等三角形的判定和性质等知识.
(1)四边形DBFE是平行四边形,利用底×高可求面积;△EFC的面积利用底×高的一半计算;△ADE的面积,可以先过点A作AH⊥BC,交DE于G,交BC于H,即AG是△ADE的高,AH是△ABC的高,利用平行线分线段成比例定理的推论,可知△ADE∽△ABC,利用相似三角形的面积比等于相似比的平方,可求AG,再利用三角形的面积公式计算即可;
(2)由于DE∥BC,EF∥AB,可知四边形DBFE是,同时,利用平行线分线段成比例定理的推论,可知△ADE∽△ABC,△EFC∽△ABC,从而易得△ADE∽△EFC,利用相似三角形的面积比等于相似比的平方,可得S1:S2=a2:b2,由于S1=
bh,那么可求S2,从而易求4S1S2,又S=ah,容易证出结论;
(3)过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形,容易证出△DBE≌△GHF,那么△GHC的面积等于8,再利用(2)中的结论,可求DBHG的面积,从而可求△ABC的面积.
试题解析:(1)S1=9,S2=1;
(2)如图1,
∵DE∥BC,EF∥AB,
∴四边形DBFE为平行四边形,∠AED=∠C,∠A=∠CEF,
∴△ADE∽△EFC,
∴
=(
)2=
,
∵S1=
bh,
∴S2=
×S1=
,
∴4S1S2=4×
bh×
=(ah)2,
而S=ah,
∴S2=4S1S2;
(3)如图2,过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形,
,∴∠GHC=∠B,BD=HG,DG=BH,
∵四边形DEFG为平行四边形,
∴DG=EF,
∴BH=EF,
∴BE=HF,
∴△DBE≌△GHF,
∴△GHC的面积为7+5=12,
由(2)得,平行四边形DBHG的面积S为
=12,
∴△ABC的面积为3+12+12=27.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.

(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校组织初二年级400名学生到威海参加拓展训练活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.
(1)每辆小客车和每辆大客车各能坐多少名学生?
(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:
①请你设计出所有的租车方案;
②若小客车每辆租金250元,大客车每辆租金350元,请选出最省线的租车方案,并求出最少租金.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(6分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:
摸球的次数n
100
150
200
500
800
1000
摸到白球的次数m
68
109
136
345
368
701
摸到乒乓球的频率
0.68
0.73
0.68
0.69
0.70
0.70
(1)请估计:当n很大时,摸到白球的频率将会接近________;
(2)假如你去摸一次,你摸到白球的概率是_______,摸到黑球的概率是_______;
(3)试估算口袋中黑、白两种颜色的球各有多少只?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.

(1)填空:点B的坐标为________,点C的坐标为_________.
(2)若正方形以每秒
个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:

①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是( )
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市教育局为了了解初二学生第一学期参加社会实践活动的天数,随机抽查本市部分初二学生第一学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)

请你根据图中提供的信息,回答下列问题:
(1)a= ;
(2)补全条形统计图;
(3)求实践天数为5天对应扇形的圆心角度数;
(4)如果该市有初二学生20000人,请你估计“活动时间不少于5天”的大约有多少人?
相关试题