【题目】如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.
![]()
(1)如果AC=6cm,BC=8cm,试求△ACD的周长;
(2)如果∠CAD:∠BAD=1:2,求∠B的度数.
参考答案:
【答案】(1) 14cm;(2)36°
【解析】分析:(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;
(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.
详解:
(1)由折叠的性质可知,DE垂直平分线段AB,
根据垂直平分线的性质可得:DA=DB,
所以,DA+DC+AC=DB+DC+AC=BC+AC=14cm;
(2)设∠CAD=x,则∠BAD=2x,
∵DA=DB,
∴∠B=∠BAD=2x,
在Rt△ABC中,∠B+∠BAC=90°,
即:2x+2x+x=90°,x=18°,
∠B=2x=36°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,点
是
的中点,过点
作
,垂足
在线段
上,连接
,
.
(1)求证:
;(2)若
,则
°. -
科目: 来源: 题型:
查看答案和解析>>【题目】将一个直角三角形纸片
放置在平面直角坐标系中,
是坐标原点,点
坐标为
,点
坐标为
,
,点
是边
上一点(点
不与点
,点
重合),沿
折叠该纸片,点
的对应点为点
,连接
.
(1)如图1,当点
在第一象限,且
时,求点
的坐标;(2)如图2,当点
为
的中点时;①求证:
;②直接写出四边形
的面积;(3)当
时,直接写出点
的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】(1) 发现:
如图1,点
是线段
外一动点,且
,
.当点
位于 时,线段
的长取得最大值;最大值为 (用含
,
的式子表示).
(2)应用:
如图2,点
为线段
外一动点,
,
,分别以
,
为边在
外部作等边
和等边
,连接
,
.①求证:
;②直接写出线段
长的最大值.(3)拓展:
如图3,在平面直角坐标系中,点
,点
,点
为线段
外一动点,
,
,
,请直接写出线段
长的最大值及此时点
的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一个长为4,宽为3,高为12矩形牛奶盒,从上底一角的小圆孔插入一根到达底部的直吸管,吸管在盒内部分a的长度范围是(牛奶盒的厚度、小圆孔的大小及吸管的粗细均忽略不计)( )

A. 5≤a≤12B. 12≤a≤3

C. 12≤a≤4
D. 12≤a≤13 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为
,若
,则
的值是_______.
相关试题