【题目】如图①,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).
![]()
(1)若α=70°,β=40°,求∠DCE的度数;
(2)试用α、β的代数式表示∠DCE的度数(直接写出结果);
(3)如图②,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且α﹣β=30°,求∠DCE的度数.
参考答案:
【答案】(1)15°;(2)
;(3)75°.
【解析】
(1)三角形的内角和是180°,已知∠BAC与∠ABC的度数,则可求出∠BAC的度数,然后根据角平分线的性质求出∠BCE,再利用三角形的一个外角等于和它不相邻的两个内角的和求出∠DEC的度数,进而求出∠DCE的度数;
(2)∠DCE=
.
(3)作∠ACB的内角平分线CE′,根据角平分线的性质求出∠ECE′=∠ACE+∠ACE′=
∠ACB+
∠ACF=90°,进而求出∠DCE的度数.
解:(1)因为∠ACB=180°﹣(∠BAC+∠B)=180°﹣(70°+40°)=70°,
又因为CE是∠ACB的平分线,
所以
.
因为CD是高线,
所以∠ADC=90°,
所以∠ACD=90°﹣∠BAC=20°,
所以∠DCE=∠ACE﹣∠ACD=35°﹣20°=15°.
(2)
.
(3)如图,作∠ACB的内角平分线CE′,
则
.
因为CE是∠ACB的外角平分线,
所以∠ECE′=∠ACE+∠ACE′=
=
=90°,
所以∠DCE=90°﹣∠DCE′=90°﹣15°=75°.
即∠DCE的度数为75°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图在等边△ABC中,点D.E分别在边BC,AB上,且BD=AE,AD与CE交于点F.
(1)求证:AD=CE
(2)求∠DFC的度数

-
科目: 来源: 题型:
查看答案和解析>>【题目】(9分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,
≈1.73)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠B=∠C,D,E,F分别是BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=55°,则∠A=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形的一条高与一腰的夹角为40°,则等腰三角形的一个底角为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=70°,∠C=30°,求∠DAE和∠AOB.

相关试题