【题目】(9分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,
≈1.73)
![]()
参考答案:
【答案】13米.
【解析】
试题根据矩形性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求出问题即可.
试题解析:如图,过点D作DG⊥BC于G,DH⊥CE于H,
则四边形DHCG为矩形.
故DG=CH,CG=DH,
在直角三角形AHD中,
∵∠DAH=30°,AD=6,
∴DH=3,AH=3
,
∴CG=3,
设BC为x,
在直角三角形ABC中,AC=
=
,
∴DG=3
+
,BG=x﹣3,
在直角三角形BDG中,∵BG=DGtan30°,
∴x﹣3=(3
+
)![]()
解得:x≈13,
∴大树的高度为:13米.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠ABC=∠ACB,BD、CD、BE分别平分△ABC的内角∠ABC、外角∠ACP、外角∠MBC.以下结论:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠A+2∠BEC=180°;⑤DB平分∠ADC.其中正确的结论有( )

A.2个B.3个C.4个D.5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图在等边△ABC中,点D.E分别在边BC,AB上,且BD=AE,AD与CE交于点F.
(1)求证:AD=CE
(2)求∠DFC的度数

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).

(1)若α=70°,β=40°,求∠DCE的度数;
(2)试用α、β的代数式表示∠DCE的度数(直接写出结果);
(3)如图②,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且α﹣β=30°,求∠DCE的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠B=∠C,D,E,F分别是BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=55°,则∠A=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形的一条高与一腰的夹角为40°,则等腰三角形的一个底角为_____.
相关试题