【题目】如图,△ABD,△AEC都是等边三角形,线段BE与DC有怎样的数量关系?请用旋转的性质说明上述关系成立的理由. ![]()
参考答案:
【答案】解:BE=CD,理由是: ∵△ABD,△AEC都是等边三角形,
∴AC=AE,AB=AD,∠CAE=∠DAB=60°,
∴∠BAE=∠DAC,
在△BAE和△DAC中,
∵
,
∴△BAE≌△DAC(SAS),
∴BE=CD
【解析】利用等边三角形的性质证明△BAE≌△DAC即可.
【考点精析】本题主要考查了等边三角形的性质和旋转的性质的相关知识点,需要掌握等边三角形的三个角都相等并且每个角都是60°;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一直角坐标系中的图象可能是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,两圆圆心相同,大圆的弦AB与小圆相切,若图中阴影部分的面积是16π,则AB的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).
(1)小红摸出标有数3的小球的概率是 .
(2)请你用列表法或画树状图法求点P(x,y)在函数y=﹣x+5图象上的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,以AB为直径的O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.

(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)如果AB=5,BC=6,求DE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B.C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①探究BD与CF之间的位置关系,并说明理由;
②当AB=
,AD=
+1时,求线段DH的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A.B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

(1)求A,B,C,D的坐标;
(2)判断以点A,C,D为顶点的三角形的形状,并说明理由;
(3)点M( m,0)(﹣3<m<﹣1)为线段AB上一点,过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,得矩形PQNM,当矩形PQMN的周长最大时,m的值是多少?并直接写出此时△AEM的面积.
相关试题