【题目】函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一直角坐标系中的图象可能是( )
A.![]()
B.
C.![]()
D.![]()
参考答案:
【答案】C
【解析】解:A、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2+bx+c的图象应该开口向下,故选项错误; B、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2+bx+c的图象应该开口向下,故选项错误;
C、由一次函数y=ax+a的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x=﹣
>0,故选项正确;
D、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2+bx+c的对称轴x=﹣
<0,故选项错误.故选C.
【考点精析】通过灵活运用一次函数的图象和性质和二次函数的图象,掌握一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】冬天来了,晒衣服成了头疼的事情,聪明的小华想到一个好办法,在家后院地面(BD)上立两根等长的立柱AB、CD(均与地面垂直),并在立柱之间悬挂一根绳子.由于挂的衣服比较多,绳子的形状近似成了抛物线y=ax2﹣0.8x+c,如图1,已知立柱AB=CD=2.6米,BD=8米.

(1)求绳子最低点离地面的距离;
(2)为了防止衣服碰到地面,小华在离AB为3米的位置处用一根垂直于地面的立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.6米,求MN的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边 形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.
(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;
(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;
(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2﹣4ax+b与x轴的一个交点A的坐标为(3,0),与y轴交于点C.
(1)求抛物线与x轴的另一个交点B的坐标;
(2)当a=﹣1时,将抛物线向上平移m个单位后经过点(5,﹣7).
①求m的值及平移前、后抛物线的顶点P、Q的坐标.
②设平移后抛物线与y轴交于点D,问:在平移后的抛物线上是否存在点E,使得△ECD的面积是△EPQ的3倍?若存在,请求出点E的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,两圆圆心相同,大圆的弦AB与小圆相切,若图中阴影部分的面积是16π,则AB的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).
(1)小红摸出标有数3的小球的概率是 .
(2)请你用列表法或画树状图法求点P(x,y)在函数y=﹣x+5图象上的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABD,△AEC都是等边三角形,线段BE与DC有怎样的数量关系?请用旋转的性质说明上述关系成立的理由.

相关试题