【题目】宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?
(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)
参考答案:
【答案】(1)A种纪念品每件需10元、B种纪念品每件需5元;(2)有三种方案;(3)当a=2.5时,三种方案获利相同;当0≤a<2.5时,方案一获利最多;当2.5<a≤5时,方案三获利最多
【解析】
(1)设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得关于x和y的二元一次方程组,解得x和y的值即可;
(2)设购进A种纪念品t件,则购进B种纪念品(100﹣t)件,由题意得关于t的不等式,解得t的范围,再由t为正整数,可得t的值,从而方案数可得;
(3)分别写出三种方案关于a的利润函数,根据一次函数的性质可得答案.
解:(1)设购进A种纪念品每件需x元、B种纪念品每件需y元,
根据题意得:![]()
解得:![]()
答:购进A种纪念品每件需10元、B种纪念品每件需5元;
(2)设购进A种纪念品t件,则购进B种纪念品(100﹣t)件,
由题意得:750≤5t+500≤764
解得![]()
∵t为正整数
∴t=50,51,52
∴有三种方案.
第一种方案:购进A种纪念品50件,B种纪念品50件;
第二种方案:购进A种纪念品51件,B种纪念品50件;
第三种方案:购进A种纪念品52件,B种纪念品48件;
(3)第一种方案商家可获利:w=50a+50(5﹣a)=250(元);
第二种方案商家可获利:w=51a+49(5﹣a)=245+2a(元);
第三种方案商家可获利:w=52a+48(5﹣a)=240+4a(元).
当a=2.5时,三种方案获利相同;
当0≤a<2.5时,方案一获利最多;
当2.5<a≤5时,方案三获利最多.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,将矩形OABC置于平面直角坐标系中,点A,C分别在x,y轴的正半轴上,已知点B(4,2),将矩形OABC翻折,使得点C的对应点P恰好落在线段OA(包括端点O,A)上,折痕所在直线分别交BC、OA于点D、E;若点P在线段OA上运动时,过点P作OA的垂线交折痕所在直线于点 Q.设点Q的坐标为(x,y),则y关于x的函数关系式是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x,y的方程满足方程组
.(1)若x﹣y=2,求m的值;
(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;
(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】两个小组同时从山脚开始攀登一座600m高的山,第一小组的攀登速度(即攀登高度与攀登时间之比)是第二小组的1.2倍,并比第二小组早20min到达山顶.
(1)第二小组的攀登速度是多少?
(2)如果山高为hm,第一小组的攀登速度是第二小组的k(k>1)倍,并比第二小组早tmin到达山顶,则第一小组的攀登速度是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据表中的信息判断,下列语句中正确的是( )
x
15
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
16
x2
225
228.01
231.04
234.09
237.16
240.25
243.36
246.49
249.64
252.81
256
A.

B.235的算术平方根比15.3小
C.只有3个正整数n满足15.5

D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
的图像交x轴于O点和A点,将此抛物线绕原点旋转180°得图像y2 , y2与x轴交于O点和B点.
(1)若y1=2x2-3x,则y2= .
(2)设 y 1 的顶点为C,则当△ABC为直角三角形时,请你任写一个符合此条件的 y 1 的表达式 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等腰直角三角形,AB=BC,O是△ABC内部的一个动点,△OBD是等腰直角三角形,OB=BD.
(1)求证:∠AOB=∠CDB;
(2)若△COD是等腰三角形,∠AOC=140°,求∠AOB的度数.

相关试题