【题目】某公司要生产若干件新产品,需要加工后才能投放市场.现有红星和巨星两个工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工多用20天,红星厂每天可以加工16个,巨星厂每天可以加工24个.公司需付红星厂每天加工费80元,巨星厂每天加工费120元.
(1)这家公司要生产多少件新产品?
(2)公司制定产品加工方案如下:可由每个厂家单独完成,也可由两个厂共同合作完成.在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并负担每天的补助费5元.请你帮公司选择一种既省钱又省时的加工方案.
参考答案:
【答案】(1)这个公司要加工960件新产品;(2)由两厂合作同时完成时,即省钱又省时间.
【解析】
(1)设这个公司要加工x件新产品,则红星厂单独加工这批产品需
天,巨星厂单独加工这批产品需要
天,根据题意找出等量关系:红星厂单独加工这批产品需要的天数-巨星厂单独加工这批产品需要的天数=20,根据此等量关系列出方程求解即可.
(2)应分为三种情况讨论:①由红星厂单独加工;②由巨星厂单独加工;③由两场厂共同加工,分别比较三种情况下,所耗时间和花费金额,求出即省钱,又省时间的加工方案.
(1)设这个公司要加工x件新产品,则红星厂单独加工这批产品需
天,巨星厂单独加工这批产品需要
天,由题意得:
![]()
=20,
解得:x=960.
答:这个公司要加工960件新产品。
(2)①由红星厂单独加工:需要耗时为
=60天,需要费用为:60×(5+80)=5100元;
②由巨星厂单独加工:需要耗时为
=40天,需要费用为:40×(120+5)=5000元;
③由两场厂共同加工:需要耗时为
=24天,需要费用为:24×(80+120+5)=4920元.
所以,由两厂合作同时完成时,即省钱,又省时间
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法:①若|a|=-b,|b|=b,则a=b=0;②若-a不是正数,则a为非负数;③|-a
|=(-a)
; ④若
,则
; ⑤若a+b=0,则a3+b3=0; ⑥若|a|>b,则a2>b2;其中正确的结论有( )A.2个B.3个C.4个D.5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.
(1)求甲、乙每天能生产多少万只口罩?
(2)问至少应安排两个工厂工作多少天才能完成任务?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴的负半轴上,且AC=AB,点D的坐标为(0,3),直线l经过点C、D.
(1)求抛物线的表达式;
(2)点P是直线l在第三象限上的点,联结AP,且线段CP是线段CA、CB的比例中项,
求tan∠CPA的值;

(3)在(2)的条件下,联结AM、BM,在直线PM上是否存在点E,使得∠AEM=∠AMB.若存在,求出点E的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在数轴上点A、B、C表示的数分别为﹣2,1,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.

(1)则AB= ,BC= ,AC= ;
(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC﹣AB的值是否随着运动时间t的变化而改变?若变化,请说明理由;若不变,请求其值;
(3)由第(1)小题可以发现,AB+BC=AC.若点C以每秒3个单位长度的速度向左运动,同时,点A和点B分别以每秒1个单位长度和每秒2个单位长度的速度向右运动.请问:随着运动时间t的变化,AB、BC、AC之间是否存在类似于(1)的数量关系?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(–4,n),B(2,–4)是一次函数y=kx+b的图象和反比例函数
的图象的两个交点.(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求不等式
的解集(请直接写出答案).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx+6与x轴、y轴分别交于点E,F,点E的坐标为(﹣8,0),点A的坐标为(﹣6,0)
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,探究:当点P运动到什么位置时,△OPA的面积为
,并说明理由;(4)问在x轴上是否存在点Q,使得△EFQ为等腰三角形?若存在,求出符合条件的Q的坐标;若不存在,请说明理由.

相关试题