【题目】如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF
DE.
(1)求证:DF是⊙O的切线;
(2)连接AF交DE于点M,若 AD
4,DE
5,求DM的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)1
【解析】试题分析:
(1)由BD平分∠ABC,AB∥DE可证得∠DBE=∠BDE,由DE=EF,可得∠EDF=∠EFD,由此可得∠BDE+∠EDF=90°,即可得到BD⊥DF,从而可得DF是⊙O的切线;
(2)如图,连接DC,由已知易证△ABD≌△CBD,从而可得 CD=AD=4,AB=BC;在Rt△DCE中由勾股定理可求得EC=3;由(1)可得BE=DE=EF=5,从而可得BC=AB=8;由AB∥DE可得△ABF∽△MEF,由此即可求得ME的长,最后由MD=DE-ME即可求得所求答案.
试题解析:
(1)∵ BD平分∠ABC,
∴ ∠ABD=∠CBD.
∵ DE∥AB,
∴ ∠ABD=∠BDE.
∴ ∠CBD=∠BDE.
∵ ED=EF,
∴ ∠EDF=∠EFD.
∵∠EDF+∠EFD+∠EDB+∠EBD=180°,
∴ ∠BDF=∠BDE+∠EDF=90°.
∴ OD⊥DF.
∵OD是半径,
∴ DF是⊙O的切线.
(2)连接DC,
∵ BD是⊙O的直径,
∴ ∠BAD=∠BCD=90°.
∵ ∠ABD=∠CBD,BD=BD,
∴ △ABD≌△CBD.
∴ CD=AD=4,AB=BC.
∵ DE=5,
∴
,EF=DE=5.
∵ ∠CBD=∠BDE,
∴ BE=DE=5.
∴
,
.
∴ AB=8.
∵ DE∥AB,
∴ △ABF∽△MEF.
∴
.
∴ ME=4.
∴
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠B
90°,AB
4,BC
2,以AC为边作△ACE,∠ACE
90°,AC=CE,延长BC至点D,使CD
5,连接DE.求证:△ABC∽△CED.
-
科目: 来源: 题型:
查看答案和解析>>【题目】古代阿拉伯数学家泰比特·伊本·奎拉对勾股定理进行了推广研究:如图(图1中
为锐角,图2中
为直角,图3中
为钝角).
在△ABC的边BC上取
,
两点,使
,则
∽
∽
,
,
,进而可得
;(用
表示)若AB=4,AC=3,BC=6,则
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,函数
(x<0)与y=ax+b的图象交于点A(﹣1,n)和点B(﹣2,1).(1)求k,a,b的值;
(2)直线x=m与
(x<0)的图象交于点P,与y=﹣x+1的图象交于点Q,当∠PAQ>90°时,直接写出m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】画图,探究:
(1)一个正方体组合图形的主视图、左视图(如图1)所示.
①这个几何体可能是(图2)甲、乙中的 ;
②这个几何体最多可由 个小正方体构成,请在图3中画出符合最多情况的一个俯视图.
(2)如图,已知一平面内的四个点A、B、C、D,根据要求用直尺画图.
①画线段AB,射线AD;
②找一点M,使M点即在射线AD上,又在直线BC上;
③找一点N,使N到A、B、C、D四个点的距离和最短.


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,
,
°,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至
,连接
.已知AB
2cm,设BD为x cm,B
为y cm.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了
与
的几组值,如下表: 

0.5
0.7
1.0
1.5
2.0
2.3

1.7
1.3
1.1
0.7
0.9
1.1
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.

(3)结合画出的函数图象,解决问题:
线段
的长度的最小值约为__________
;若
,则
的长度x的取值范围是_____________. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图在平面直角坐标系xOy中,函数y1=
(x>0)的图象与一次函数y2=kx-k的图象的交点为A(m,2).(1)求一次函数的解析式;
(2)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是6,请写出点P的坐标.

相关试题