【题目】如图,在山顶上有一座电视塔,在塔顶B处,测得地面上一点A的俯角α=60°,在塔底C处测得的俯角β=45°,已知BC=60m,求山高CD(精确到1m,
≈1.732)![]()
参考答案:
【答案】解:设山高CD=x(米),
∵∠CAD=∠β=45°,∠BAD=∠α=60°,∠ADB=90°,
∴AD=CD=x,BD=ADtan60°=
x.
∵BD﹣CD=BC=60,
∴
x﹣x=60.
∴x=
=30(
+1).
∴CD=30×(1.732+1)≈82(米).
答:山高CD约为82米.
【解析】抓住题中关键的已知条件,得出∠CAD和∠BAD的度数,从而可得出AD=CD=x,则根据解直角三角形,可表示出BD的长,再根据BD﹣CD=BC=60,建立关于x的方程,求解即可。
【考点精析】本题主要考查了解一元一次方程的步骤和解直角三角形的相关知识点,需要掌握先去分母再括号,移项变号要记牢.同类各项去合并,系数化“1”还没好.求得未知须检验,回代值等才算了;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.

(1)求证:直线BD与⊙O相切;
(2)若AD:AE=
:
,BC=6,求切线BD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程ax2+2x﹣1=0.
(1)若该方程无解,求a的取值范围;
(2)当a=1时,求该方程的解. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:
(1)画一个直角边长为4,面积为6的直角三角形.
(2)画一个底边长为4,面积为8的等腰三角形.
(3)画一个面积为5的等腰直角三角形.
(4)画一个边长为2
,面积为6的等腰三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图2的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)
(1)如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片 张,正方形铁片 张.
(2)现有长方形铁片2014张,正方形铁片1176张,如果加工成这两种铁容器,刚好铁片全部用完,那么加工的竖式铁容器、横式铁容器各有多少个?
(3)把长方体铁容器加盖可以加工成为铁盒.现用35张铁板做成与如图相同的长方形铁片和正方形铁片,已知每张铁板可做成3个长方形铁片或4个正方形铁片,也可以将一张铁板做成1个长方形铁片和2个正方形铁片.该如何充分利用这些铁板加工成铁盒,最多可以加工成多少个铁盒?

-
科目: 来源: 题型:
查看答案和解析>>【题目】感知:分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式
时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①
或②
解不等式组①,得x>3,
解不等式组②,得
.所以原分式不等式的解集为x>3或
.探究:请你参考小亮思考问题的方法,解不等式
.应用:不等式(x﹣3)(x+5)≤0的解集是 .
相关试题