【题目】(1)解不等式:2x﹣5<4(x+1)﹣3;
(2)解关于x的不等式:x﹣5>a(x+4)(a≠1).
参考答案:
【答案】(1)x>﹣3;(2)当a>1时,不等式的解集为x<
;当a<1时,不等式的解集为x>![]()
【解析】
(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.
(2)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得,其中系数化为1时需要对x的次数进行分类讨论.
解:(1)2x﹣5<4x+4﹣3,
2x﹣4x<4﹣3+5,
﹣2x<6,
x>﹣3;
(2)x﹣5>ax+4a,
x﹣ax>4a+5,
(1﹣a)x>4a+5,
①当a>1时,1﹣a<0,则不等式的解集为x<
;
②当a<1时,1﹣a>0,则不等式的解集为x>
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD 是⊙O的内接四边形,∠ABC=2∠D,连接OA,OC,AC

(1)求∠OCA的度数
(2)如果OE
AC于F,且OC=
, 求AC的长 -
科目: 来源: 题型:
查看答案和解析>>【题目】随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.

(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;
(2)求出水柱的最大高度的多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】列方程解应用题:
某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按
元销售时,每天可销售
个;若销售单价每降低元,每天可多售出
个.已知每个玩具的固定成本为
元,问这种玩具的销售单价为多少元时,厂家每天可获利润
元? -
科目: 来源: 题型:
查看答案和解析>>【题目】对于结论:当a+b=0时,a3+b3=0也成立.若将a看成a3的立方根,b看成b3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”
(1)举一个具体的例子来判断上述结论是否成立;
(2)若
和
互为相反数,且x+5的平方根是它本身,求x+y的立方根. -
科目: 来源: 题型:
查看答案和解析>>【题目】某年级共有300名学生,为了解该年级学生在
,
两个体育项目上的达标情况,进行了抽样调査.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:
项目 78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 95 58 54 63 67 82 74
项目 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据
项目的频数分布表分组
划记
频数

—
1


2


2


8



5
(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)
根据以上信息,回答下列问题:
(1)补全统计图、统计表;
(2)在此次测试中,成绩更好的项目是__________,理由是__________;
(3)假设该年级学生都参加此次测试,估计
项目和
项目成绩都是优秀的人数最多为________人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:
A型
B型
价格(万元/台)
x
y
年载客量/万人次
60
100
若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.
(1)求x、y的值;
(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?
(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?
相关试题