【题目】求下列式中的x的值.(2x+1)2= 9.
参考答案:
【答案】x=1或x=-2.
【解析】试题分析:利用平方根定义开方即可求出x的值.
试题解析:开方得:2x+1=±3,
即2x+1=3或2x+1=-3,
解得:x=1或x=-2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的半径为2,C、D是直径AB同侧圆周上的两点,弧AC的度数是100°,D为弧BC的中点,动点P在直径AB上,则PC+PD的最小值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.

(1)求线段BC的长;
(2)求线段MN的长;
(3)若C在线段AB延长线上,且满足AC﹣BC=b cm,M,N分别是线段AC,BC的中点,你能猜想MN的长度吗?请写出你的结论(不需要说明理由).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:

(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;
(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).
-
科目: 来源: 题型:
查看答案和解析>>【题目】科学家在实验中检测出某微生物约为0.0000035米,将0.0000035用科学记数法表示为( )
A.3.5×10﹣6 B.3.5×106 C.3.5×10﹣5 D.35×10﹣5
-
科目: 来源: 题型:
查看答案和解析>>【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.
下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=AD
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°,点F、D、G共线根据SAS,易证△AFG≌ ,从而可得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系 时,仍有EF=BE+DF.
请写出推理过程:

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一个一次函数图象经过点P(0,-3), 且经过点Q(2,3)
⑴求此一次函数表达式。
⑵求它与X轴的交点。
相关试题