【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.
下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=AD
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°,点F、D、G共线根据SAS,易证△AFG≌ ,从而可得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系 时,仍有EF=BE+DF.
请写出推理过程:
![]()
参考答案:
【答案】(1)△AFE;(2)∠B+∠D=180°.
【解析】
试题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFG≌△AFE,根据全等三角形的性质得出EF=FG,即可得出答案;
(2)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFE≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;
解:(1)理由是:如图1,
![]()
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图1,
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线,
则∠DAG=∠BAE,AE=AG,
∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°﹣45°=45°=∠EAF,
即∠EAF=∠FAG,
在△EAF和△GAF中,
,
∴△AFG≌△AFE(SAS),
∴EF=FG=BE+DF;
故答案为:△AFE;
(2)∠B+∠D=180°时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图2,
![]()
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,
,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF,
故答案为:∠B+∠D=180°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:

(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;
(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).
-
科目: 来源: 题型:
查看答案和解析>>【题目】求下列式中的x的值.(2x+1)2= 9.
-
科目: 来源: 题型:
查看答案和解析>>【题目】科学家在实验中检测出某微生物约为0.0000035米,将0.0000035用科学记数法表示为( )
A.3.5×10﹣6 B.3.5×106 C.3.5×10﹣5 D.35×10﹣5
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一个一次函数图象经过点P(0,-3), 且经过点Q(2,3)
⑴求此一次函数表达式。
⑵求它与X轴的交点。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一块边长为a厘米的正方形纸板四角,各剪去一个边长为b(b<
)厘米的正方形,利用因式分解计算当a=13.4,b=3.4时,剩余部分的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在﹣2,+3.5,0,3,﹣0.7,11中,整数有( )
A. l个 B. 2个 C. 3个 D. 4个
相关试题