【题目】如图,△ABC是等腰三角形,∠C=90°,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE,DF,EF.在此运动变化过程中,有下列结论:
①DE=DF;
②∠EDF=90°;
③四边形CEDF不可能为正方形;
④四边形CEDF的面积保持不变.
一定成立的结论有(把你认为正确的序号都填上)![]()
参考答案:
【答案】①②④
【解析】解:①连接CD;![]()
∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
在△ADE和△CDF中,![]()
∴△ADE≌△CDF(SAS),
∴ED=DF,①正确;
②∵△ADE≌△CDF,
∴∠CDF=∠EDA,
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,②正确;
③当E、F分别为AC、BC中点时,DE⊥AC,DF⊥BC,又∠ACB=90°,
∴四边形CEDF是矩形,
∵CE=CF,
∴四边形CDFE是正方形,③错误;
④如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,![]()
则DM=DN,
在Rt△DME和Rt△DNF中,
,
∴Rt△DME≌Rt△DNF(HL),
∴四边形CEDF的面积等于正方形CMDN面积,故面积保持不变,④正确,
所以答案是:①②④.
【考点精析】掌握等腰三角形的性质是解答本题的根本,需要知道等腰三角形的两个底角相等(简称:等边对等角).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,AB∥CD,点P为定点,E、F分别是AB、CD上的动点.

(1)求证:∠P=∠BEP+∠PFD;
(2)若点M为CD上一点,如图2,∠FMN=∠BEP,且MN交PF于N.试说明∠EPF与∠PNM的数量关系,并证明你的结论;
(3)移动E、F使得∠EPF=90°,如图3,作∠PEG=∠BEP,求∠AEG与∠PFD度数的比值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现在,苏宁商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.
(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?
(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?
(3)小张按合算的方案,把这台冰箱买下,如果商场还能盈利25%,这台冰箱的进价是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,数轴的单位长度为1.

(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是 、 ;
(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;
(3) 在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,则∠1+∠2的度数为( )

A. 80°; B. 90°; C. 100°; D. 110°;
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在四边形
中,∠A=∠C=90°.(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明.

(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.

(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角(即∠CDE=
,∠CBE=
),则∠E= .
相关试题