【题目】如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=
的图象上,OA=1,OC=6,则正方形ADEF的边长为 . ![]()
参考答案:
【答案】2
【解析】解:∵OA=1,OC=6,
∴B点坐标为(1,6),
∴k=1×6=6,
∴反比例函数解析式为y=
,
设AD=t,则OD=1+t,
∴E点坐标为(1+t,t),
∴(1+t)t=6,
整理为t2+t﹣6=0,
解得t1=﹣3(舍去),t2=2,
∴正方形ADEF的边长为2.
故答案为:2.
先确定B点坐标(1,6),根据反比例函数图象上点的坐标特征得到k=6,则反比例函数解析式为y=
,设AD=t,则OD=1+t,所以E点坐标为(1+t,t),再利用根据反比例函数图象上点的坐标特征得(1+t)t=6,利用因式分解法可求出t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示:

如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.则( )
A. 甲的平均成绩高于乙的平均成绩
B. 乙的平均成绩高于甲的平均成绩
C. 甲与乙的平均成绩相同
D. 无法确定谁的成绩更高
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂为了选择1名车工参加加工直径为10 mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你比较
、
的大小( )
A.
>
B.
=
C.
<
D.
≤
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司33名职工的月工资(单位:元)如下:

(1)求该公司职工月工资的平均数、中位数、众数;(精确到个位)
(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又各是多少?(精确到个位)
(3)你认为哪个统计量更能反映这个公司职工的工资水平,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.

(1)若点C恰为AB的中点,求DE的长;
(2)若AC=6cm,求DE的长;
(3)试说明不论AC取何值(不超过16cm),DE的长不变;
(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD被DE所截,则∠1和 是同位角,∠1和 是内错角,∠1和 是同旁内角;
(2)在(1)中,如果∠5=∠1,那么∠1=∠3的推理过程如下,请在括号内注明理由:
因为∠5=∠1( ),
∠5=∠3( ),
所以∠1=∠3( ).

-
科目: 来源: 题型:
查看答案和解析>>【题目】2010年春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果作出的统计图的一部分.


请根据以上信息解答问题:
(1)补全图1和图2;
(2)如果全校学生家庭总人数约为3 000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.
相关试题