【题目】已知有理数a,b满足ab<0,a+b>0,7a+2b+1=﹣|b﹣a|,则
的值为_____.
参考答案:
【答案】﹣
(9a+1)2或0.
【解析】
由ab<0可得a、b异号,由a+b>0可得,正数的绝对值较大,再分两类讨论:①a>0,b<0;②a<0,b>0,在这两种情况下对7a+2b+1=﹣|b﹣a|进行化简,最后计算出所求式子的值即可.
∵ab<0,a+b>0,∴a、b异号,且正数绝对值较大,
①当a>0,b<0时,b﹣a<0,|b﹣a|=a﹣b,
∴7a+2b+1=﹣(a﹣b)=b﹣a,
∴b=﹣1﹣8a,
∴(2a+b+
)·(a﹣b)=(2a﹣1﹣8a+
)·[a﹣(﹣1﹣8a)]=(﹣6a﹣
)·(9a+1)=﹣
(9a+1)2;
②当a<0,b>0时,b﹣a>0,|b﹣a|=b﹣a,
∴7a+2b+1=﹣(b﹣a)=a﹣b,
∴2a+b=﹣
,
∴(2a+b+
)·(a﹣b)=0.
故答案为﹣
(9a+1)2或0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,AD与OC交于点E,连接CD、OD,给出以下四个结论: ①AC∥OD;②CE=OE;③∠CDE=∠COD;④2CD2=CEAB.
其中正确结论的序号是(在横线上填上你认为所有正确结论的代号).
-
科目: 来源: 题型:
查看答案和解析>>【题目】每个小方格是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系的位置如图所示.

(I)以O为位似中心,在第一象限内将菱形OABC放大为原来的2倍得到菱形OA1B1C1 , 请画出菱形OA1B1C1 , 并直接写出点B1的坐标;
(II)将菱形OABC绕原点O顺时针旋转90°菱形OA2B2C2 , 请画出菱形OA2B2C2 , 并求出点B旋转到点B2的路径长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,点E是BC上一点,直线AE交BD于点M,交DC的延长线于点F,G是EF的中点,连结CG.求证: ①△ABM≌△CBM;
②CG⊥CM.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某村庄计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积和可供使用农户数见下表:
型号
占地面积
(单位:m2/个)
可供使用农户数
(单位:户/个)
A
15
18
B
20
30
已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.
(1)如何合理分配建造A,B型号“沼气池”的个数才能满足条件?满足条件的方案有几种?通过计算分别写出各种方案.
(2)请写出建造A、B两种型号的“沼气池”的总费用y和建造A型“沼气池”个数x之间的函数关系式;
(3)若A型号“沼气池”每个造价2万元,B型号“沼气池”每个造价3万元,试说明在(1)中的各种建造方案中,哪种建造方案最省钱,最少的费用需要多少万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).

请回答:BC+DE的值为________
参考小明思考问题的方法,解决问题:
如图3,已知ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数________
相关试题