【题目】如图,在△ABC中,按以下步骤作图:
①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;
②分别以D,E为圆心,以大于
DE的同样长为半径作弧,两弧交于点F;
③作射线BF交AC于G.
如果BG=CG,∠A=60°,那么∠ACB的度数为____________.
![]()
参考答案:
【答案】40°
【解析】
由作图可知,BG平分∠ABC,得到∠ABG=∠CBG,由等边对等角得到∠CBG=∠BCG,再由三角形内角和定理即可得到结论.
由作图可知,BG平分∠ABC,∴∠ABG=∠CBG.
∵BG=CG,∴∠CBG=∠BCG.
∵∠A+∠ACB +∠CBA=180°,∴∠A+3∠ACB =180°,∴60°+3∠ACB =180°,∴∠ACB =40°.
故答案为:40°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.

(1)求证:DE是⊙O的切线;
(2)若△ABC的边长为4,求EF的长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】根据几何图形的面积关系可以形象直观地表示多项式的乘法.例如:(2a+b)(a+b)=2a2+3ab+b2可以用图(1)表示

(1)根据图(2),写出一个多项式乘以多项式的等式;
(2)从A,B两题中任选一题作答:
A.请画出一个几何图形,表示(x+p)(x+q)=x2+(p+q)x+pq,并仿照上图标明相应的字母;
B.请画出一个几何图形,表示(x﹣p)(x﹣q)=x2﹣(p+q)x+pq,并仿照上图标明相应的字母.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明骑自行车上学,某天他从家出发骑行了一段路程,想起要买一本书,于是折回到他刚经过的某书店,买到书后继续去学校.以下是他在本次上学离家的距离与所用的时间的关系示意图,根据图中提供的信息解答下列问题:
(1)小明家与学校的距离是_____米.
(2)小明在书店停留了多少分钟?
(3)从A,B两题中任选一题作答:
A.小明骑行过程中哪个时间段的速度最快,最快的速度是多少?
B.小明在这次上学过程中的平均速度是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过 A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.
(1)依题意补全图形;
(2)求证:△AEC≌△BDA.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在Rt△ABC中,∠C=90°.将△ABC绕点C逆时针旋转得到△A’B’C,旋转角为
,且0°<
<180°.在旋转过程中,点B’可以恰好落在AB的中点处,如图②.
(1)求∠A的度数;
(2)当点C到AA’的距离等于AC的一半时,求
的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】有这样一个问题:探究函数
的图象与性质.
小慧根据学习函数的经验,对函数
的图象与性质进行了探究.
下面是小慧的探究过程,请补充完成:
(1)函数
的自变量x的取值范围是;
(2)列出y与x的几组对应值.请直接写出m的值,m=;x
…
-3
-2
0
1
1.5
2.5
m
4
6
7
…
y
…
2.4
2.5
3
4
6
-2
0
1
1.5
1.6
…
(3)请在平面直角坐标系
, 描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出该函数的两条性质:
①;
② .
相关试题