【题目】问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 .
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2
,运用小聪同学探究的结论,求正方形的边长及MN的长.
![]()
参考答案:
【答案】[探究发现]△CDE;勾股;
;[实践运用](1)45°;(2)正方形边长为6,MN=
.
【解析】
试题分析:(1)由正方形的性质和全等三角形的判定方法可证明Rt△ABE≌Rt△AGE和Rt△ADF≌Rt△AGF,由全等三角形的性质即可求出∠EAF的度数;
(2)由(1)知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,设AG=x,则CE=x﹣2,CF=x﹣3.因为
,得到
.解这个方程,求出x的值即可得到AG=6,在(2)中,MN2=MB2+ND2,MN=a,
,求出a的值.即可求出MN的长.
试题解析:根据“边角边”,可证△CEH≌△CDE,得EH=ED,在Rt△HBE中,由勾股定理,可得
,由BH=AD,可得AD、DE、EB之间的等量关系是
;故答案为:△CDE;勾股;
;
(1)在Rt△ABE和Rt△AGE中,∵AB=AG,AE=AE,∴Rt△ABE≌Rt△AGE(HL),∴∠BAE=∠GAE,同理,Rt△ADF≌Rt△AGF,∴∠GAF=∠DAF,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAF=
∠BAD=45°;
(2)由(1)知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,∴BE=EG=2,DF=FG=3,则EF=5,设AG=x,则CE=x﹣2,CF=x﹣3,∵
,∴
,解这个方程,得x=6或x=﹣1(舍去),∴AG=6,∴BD=
=
=
,∴AB=6,∵
,设MN=a,则
,所以a=
,即MN=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.
(1)请判断:FG与CE的数量关系是 ,位置关系是 ;
(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).

(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是 ;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=
AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某多边形的内角和是其外角和的3倍,则此多边形的边数是( )
A. 8 B. 7 C. 6 D. 5
-
科目: 来源: 题型:
查看答案和解析>>【题目】在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的
,且数据有160个,则中间一组的频数为( )
A.32
B.0.2
C.40
D.0.25 -
科目: 来源: 题型:
查看答案和解析>>【题目】如果单项式x2ym+2与xny的和仍然是一个单项式,则(m+n)2019等于( )
A. 1 B. ﹣1 C. 2019 D. ﹣2019
相关试题