【题目】某多边形的内角和是其外角和的3倍,则此多边形的边数是( )
A. 8 B. 7 C. 6 D. 5
参考答案:
【答案】A
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.
(1)请判断:FG与CE的数量关系是 ,位置关系是 ;
(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).

(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是 ;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=
AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 .
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2
,运用小聪同学探究的结论,求正方形的边长及MN的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的
,且数据有160个,则中间一组的频数为( )
A.32
B.0.2
C.40
D.0.25 -
科目: 来源: 题型:
查看答案和解析>>【题目】如果单项式x2ym+2与xny的和仍然是一个单项式,则(m+n)2019等于( )
A. 1 B. ﹣1 C. 2019 D. ﹣2019
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于平行四边形ABCD的叙述,正确的是( )
A. 若AB⊥BC,则平行四边形ABCD是菱形 B. 若AC⊥BD,则平行四边形ABCD是正方形
C. 若AC=BD,则平行四边形ABCD是矩形 D. 若AB=AD,则平行四边形ABCD是正方形
相关试题