【题目】甲同学在拼图探索活动中发现,用4个形状大小完全相同的直角三角形(直角边长分别为a,b,斜边长为c),可以拼成像如图1那样的正方形,并由此得出了关于a2,b2,c2的一个等式.
![]()
(1)请你写出这一结论:______,并给出验证过程.
(2)试用上述结论解决问题:如图2,P是Rt△ABC斜边AB上的一个动点,已知AC=5,AB=13,求PC的最小值.
参考答案:
【答案】(1) a2+b2=c2;(2)PC的最小值为
.
【解析】
(1)结论:a2+b2=c2,根据三角形、矩形、正方形的面积公式求解即可;
(2)根据勾股定理求出BC的长,当CP⊥AB时,PC最短,即可求出PC的最小值.
(1)结论:a2+b2=c2.
验证:∵四个三角形的面积=4×
=2ab,
四个三角形的面积=边长为
的正方形面积-边长为
的正方形面积=(a+b)2-c2,
∴(a+b)2-c2=2ab,
即a2+b2=c2.
(2)∵Rt△ABC中,AC=5,AB=13,
∴52+BC2=132,
解得BC=12,
当CP⊥AB时,PC最短,
此时,
BC×AC=
AB×PC,
即PC=
=
,
∴PC的最小值为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠1=80°,∠2=100°,∠C=∠D.
(1)判断AC与DF的位置关系,并说明理由;
(2)若∠C比∠A大20°,求∠F的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.
(1)求证:△ABE≌△ADF;
(2)试判断四边形AECF的形状,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):

(1)画出△ABC中BC边上的高AD;
(2)画出先将△ABC向右平移6格,再向上平移3格后的△A1B1C1;
(3)若格点△PAB与格点△PBC的面积相等,则这样的点P共______个.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB的函数解析式为y=-2x+8,与x轴交于点A,与y轴交于点B。

(1)求A、B两点的坐标;
(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接E,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围。
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为( )
A.
B.2020C.2019D.2018 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,线段AB 是⊙O的直径,弦CD⊥AB于点H,点M是弧CBD 上任意一点,AH=2,CH=4.
(1)求⊙O 的半径r 的长度;
(2)求sin∠CMD;
(3)直线BM交直线CD于点E,直线MH交⊙O 于点 N,连接BN交CE于点 F,求HE
HF的值.

相关试题