【题目】小张准备把一根长为32cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于40cm2,小张该怎么剪?
(2)小李对小张说:“这两个正方形的面积之和不可能等于30cm2.”他的说法对吗?请说明理由.
参考答案:
【答案】(1)小张应将40cm的铁丝剪成8cm和24cm两段,并将每一段围成一个正方形;(2)他的说法对.
【解析】试题分析:
(1)设围成的两个正方形中其中一个边长为xcm,则另一个正方形的边长为
cm,由此根据题意可列出方程
,解此方程即可;
(2)同(1)可得方程:
,化为一般形式由“一元二次方程根的判别式”可知该方程无实数根,从而可得结论;
试题分析:
(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(8﹣x)cm.
∴x2+(8﹣x)2=40,
即x2﹣8x+12=0.
∴x1=2,x2=6.
∴当
时,
;当
时,
;
∴一个正方形的周长为8cm,另一个正方形的周长为24cm,
∴小张应将40cm的铁丝剪成8cm和24cm两段,并将每一段围成一个正方形.
(2)他的说法对.
假定两个正方形的面积之和能等于30cm2.
根据(1)中的方法,可得x2+(8﹣x)2=30.
即x2﹣8x+17=0,
∵△=82﹣4×17<0,
∴所列方程无解.
∴两个正方形的面积之和不可能等于30cm2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:
①2a﹣b=0;②c=﹣3a;③当m≠1时,a+b<am2+bm;
④若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2;
⑤使△ACB为等腰三角形的a值可以有三个.其中正确的结论是_________.(只填序号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,一次函数y=kx+b的图象与反比例函数y=
的图象交于M、N两点.(1)根据图中条件求出反比例函数和一次函数的解析式;
(2)连结OM、ON,求△MON的面积;
(3)根据图象,直接写出使一次函数的值大于反比例函数的值的x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是
.(1)求暗箱中红球的个数;
(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面积.
(2)若每种植1平方米草皮需要200元,问总共需投入多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形
的对角线
相交于点
.
(1)求证:四边形
为菱形;(2)
垂直平分线段
于点
,求
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,将两张正方形纸片A与三张正方形纸片B放在一起(不重叠无缝隙),拼成一个宽为10的长方形,求正方形纸片A、B的边长.
(2)如图2,将一张正方形纸片D放在一正方形纸片C的内部,阴影部分的面积为4;如图3,将正方形纸片C、D各一张并列放置后构造一个新的正方形,阴影部分的面积为48,求正方形C、D的面积之和.

相关试题