【题目】定义:至少有一组对边相等的四边形为“等对边四边形”.
![]()
(1)请写出一个你学过的特殊四边形中是“等对边四边形”的名称;
(2)如图1,四边形ABCD是“等对边四边形”,其中AB=CD,边BA与CD的延长线交于点M,点E、F是对角线AC、BD的中点,若∠M=60°,求证:EF
AB;
(3)如图2.在△ABC中,点D、E分别在边AC、AB上,且满足∠DBC=∠ECB
∠A,线段CE、BD交于点.
①求证:∠BDC=∠AEC;
②请在图中找到一个“等对边四边形”,并给出证明.
参考答案:
【答案】(1)如:平行四边形、矩形、菱形、等腰梯形等;(2)证明见解析;(3)①证明见解析;②四边形EBCD是等对边四边形.证明见解析.
【解析】
(1)理解等对边四边形的图形的定义,有平行四边形、矩形、菱形、等腰梯形等,可得出答案.
(2)取BC的中点N,连结EN,FN,由中位线定理可得EN=12CD,FN=12AB,可证明△EFN为等边三角形,则结论得证;
(3)①证明∠EOB=∠A,利用四边形内角和可证明∠BDC=∠AEC;
②作CG⊥BD于G点,作BF⊥CE交CE延长线于F点.根据AAS可证明△BCF≌△CBG,则BF=CG,证明△BEF≌△CDG,可得BE=CD,则四边形EBCD是“等对边四边形”.
(1)如:平行四边形、矩形、菱形、等腰梯形等.
(2)如图1,取BC的中点N,连结EN,FN,
![]()
∴EN
CD,FN
AB,
∴EN=FN.
∵∠M=60°,
∴∠MBC+∠MCB=120°.
∵FN∥AB,EN∥MC,
∴∠FNC=∠MBC,∠ENB=∠MCB,
∴∠ENF=180°﹣120°=60°,
∴△EFN为等边三角形,
∴EF=FN
AB.
(3)①证明:∵∠BOE=∠BCE+∠DBC,∠DBC=∠ECB
∠A,
∴∠BOE=2∠DBC=∠A.
∵∠A+∠AEC+∠ADB+∠EOD=360°,∠BOE+∠EOD=180°,
∴∠AEC+∠ADB=180°.
∵∠ADB+∠BDC=180°,
∴∠BDC=∠AEC;
②解:此时存在等对边四边形,是四边形EBCD.
如图2,作CG⊥BD于G点,作BF⊥CE交CE延长线于F点.
![]()
∵∠DBC=∠ECB
∠A,BC=CB,∠BFC=∠BGC=90°,
∴△BCF≌△CBG(AAS),
∴BF=CG.
∵∠BEF=∠ABD+∠DBC+∠ECB,∠BDC=∠ABD+∠A,
∴∠BEF=∠BDC,
∴△BEF≌△CDG(AAS),
∴BE=CD,
∴四边形EBCD是等对边四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市公交公司为应对春运期间的人流高峰,计划购买A、B两种型号的公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车3辆,共需650万元,
(1)试问该公交公司计划购买A型和B型公交车每辆各需多少万元?
(2)若该公司预计在某条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用W不超过1200万元,且确保这10辆公交车在某条线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用W最少?最少总费用是多少万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图1,DE∥AB,DF∥AC.
(1)求证:∠A=∠EDF.
(2)点G是线段AC上的一点,连接FG,DG.
①若点G是线段AE的中点,请你在图2中补全图形,判断∠AFG,∠EDG,∠DGF之间的数量关系,并证明.
②若点G是线段EC上的一点,请你直接写出∠AFG,∠EDG,∠DGF之间的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小明在数学课外小组活动时遇到这样一个问题:

如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集.
小明同学的思路如下:
先根据绝对值的定义,求出|x|恰好是3时x的值,并在数轴上表示为点A,B,如图所示.观察数轴发现,以点A,B为分界点把数轴分为三部分:
点A左边的点表示的数的绝对值大于3;
点A,B之间的点表示的数的绝对值小于3;
点B右边的点表示的数的绝对值大于3.
因此,小明得出结论绝对值不等式|x|>3的解集为:x<-3或x>3.
参照小明的思路,解决下列问题:
(1)请你直接写出下列绝对值不等式的解集.
①|x|>1的解集是 .
②|x|<2.5的解集是 .
(2)求绝对值不等式2|x-3|+5>13的解集.
(3)直接写出不等式x2>4的解集是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,一次函数y=x+1与x、y 轴分别交于点A、B,在直线 AB上截取BB1=AB,过点B1分别作x、y 轴的垂线,垂足分别为点A1、C1,得到矩形OA1B1C1;在直线 AB上截取B1B2= BB1,过点B2分别作x、y 轴的垂线,垂足分别为点A2 、C2,得到矩形OA2B2C2;在直线AB上截取B2B3= B1B2,过点B3分别作x、y 轴的垂线,垂足分别为点A3、C3,得到矩形OA3B3C3;……;
则点B1的坐标是 ;第3个矩形OA3B3C3的面积是 ;
第n个矩形OAnBnCn的面积是 (用含n的式子表示,n是正整数).

-
科目: 来源: 题型:
查看答案和解析>>【题目】美丽的赤城湖水库是蓬溪县“天蓝水绿山青”的真实写照.如图,赤城湖水库的大坝横截面是一个梯形,坝顶宽CD=4m,坝高3m,斜坡AD的坡度为1:2.5,斜坡BC的坡度为1:1.5,若大坝长200m,求大坝所用的土方是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点
,第二次点
跳动至点
第三次点
跳动至点
,第四次点
跳动至点
……,依此规律跳动下去,则点
与点
之间的距离是( )
A. 2017B. 2018C. 2019D. 2020
相关试题