【题目】如图,正方形
中,
,
是对角线
上的一个动点,若
的最小值是10,则
长为___________.
![]()
参考答案:
【答案】![]()
【解析】
如图,连接DF,DE,DE交AC于F′,连接BF′.由BF+EF=EF+DF≤DE,推出当点F与点F′重合时,BF+EF的值最小,最小值为线段DE的长,由题意AE=
AB,设AE=a,则AB=3a,在Rt△AEB中,根据AE2+AD2=DE2,构建方程即可解决问题.
如图,连接DF,DE,DE交AC于F′,连接BF′
![]()
∵四边形ABCD是正方形
∴BF=DF
∵BF+EF=EF+DFDE
∴当点F与点F′重合时,BF+EF的值最小,最小值为线段DE的长
由题意AE=
AB,设AE=a,则AB=3a
在Rt△AEB中,∵AE2+AD2=DE2
∴a2+9a2=100
∴a=![]()
∴AB=3a=![]()
故答案为:![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2015年底拥有家庭轿车64辆,2017年底家庭轿车的拥有量达到100辆.
(1)若该小区2015年底到2018年底家庭轿车拥有量的年平均增长率都相同,求该小区到2018年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一个正比例函数的图像与反比例函数
交于A(x1,y1),B(x2,y2),那么(x1-x2)(y1-y2)=____________. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如下(未完成),解答下列问题:
(1)样本容量为 ,频数分布直方图中a= ;
(2)扇形统计图中D小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上(不含80分)为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠A=90°+x°,∠B=90°﹣x°,∠CED=90°,4∠C﹣∠D=30°,射线EF∥AC.
(1)判断射线EF与BD的位置关系,并说明理由;
(2)求∠C,∠D的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,长方形ABCD的边AB在y轴正半轴上,顶点A的坐标为(0,2),设顶点C的坐标为(a,b).
(1)顶点B的坐标为 ,顶点D的坐标为 (用a或b表示);
(2)如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程2x+3y=12成立,就说这个点的坐标是方程2x+3y=12的解.已知顶点B和D的坐标都是方程2x+3y=12的解,求a,b的值;
(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,
①这次平移可以看成是先将长方形ABCD向右平移 个单位长度,再向下平移 个单位长度的两次平移;
②若点P(m,n)是对角线BD上的一点,且点P的坐标是方程2x+3y=12的解,试说明平移后点P的对应点P′的坐标也是方程2x+3y=12的解.

相关试题