【题目】如图,已知∠A=90°+x°,∠B=90°﹣x°,∠CED=90°,4∠C﹣∠D=30°,射线EF∥AC.
(1)判断射线EF与BD的位置关系,并说明理由;
(2)求∠C,∠D的度数.
![]()
参考答案:
【答案】(1)EF∥BD,见解析;(2)
.
【解析】
(1)由∠A+∠B=180°,得到AC∥BD,由EF∥AC,得到EF∥BD.
(2)由已知条件得到∠C+∠D=90°,又因为4∠C﹣∠D=30°,由两式可得∠C,∠D的度数.
(1)EF∥BD,
∵∠A+∠B=(90+x)°+(90﹣x)°=180°,
∴AC∥BD,
∵EF∥AC,
∴EF∥BD;
(2)∵AC∥EF∥BD,
∴∠CEF=∠C,∠DEF=∠D,
∵∠CED=90°,
∴∠C+∠D=90°,
联立
,
解得
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一个正比例函数的图像与反比例函数
交于A(x1,y1),B(x2,y2),那么(x1-x2)(y1-y2)=____________. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形
中,
,
是对角线
上的一个动点,若
的最小值是10,则
长为___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如下(未完成),解答下列问题:
(1)样本容量为 ,频数分布直方图中a= ;
(2)扇形统计图中D小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上(不含80分)为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,长方形ABCD的边AB在y轴正半轴上,顶点A的坐标为(0,2),设顶点C的坐标为(a,b).
(1)顶点B的坐标为 ,顶点D的坐标为 (用a或b表示);
(2)如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程2x+3y=12成立,就说这个点的坐标是方程2x+3y=12的解.已知顶点B和D的坐标都是方程2x+3y=12的解,求a,b的值;
(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,
①这次平移可以看成是先将长方形ABCD向右平移 个单位长度,再向下平移 个单位长度的两次平移;
②若点P(m,n)是对角线BD上的一点,且点P的坐标是方程2x+3y=12的解,试说明平移后点P的对应点P′的坐标也是方程2x+3y=12的解.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=12,AD=10.点Q从点D出发沿DA以每秒1个单位长度的速度向点A匀速运动;点P从点A出发沿AB以每秒2个单位长度的速度向点B匀速运动.伴随P、Q的运动,直线EF保持垂直平分PQ于点F,交射线DC于点E,点P、Q同时出发,当点P到达B点时停止运动,点Q也随之停止.设点P运动时间为t秒(0<t<6),t=____________时,EF能平分矩形ABCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=
(k≠0)的图象过点C,则该反比例函数的表达式为_______.
相关试题