【题目】如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,
(1)求证:AE平分∠DAO;
(2)若AB=6,AC=8,求OE的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)OE=
.
【解析】试题分析:(1)连接OA,由BC是 O的直径,AD⊥BC,易得∠C=∠OAE=∠B,又由F是弧BC中点,可得∠BAF=∠CAF,继而证得AE平分∠DAO;
(2)首先连接OF,易得OF∥AD,即可得DE:OE=AD:OF,然后由勾股定理求得AD,BD的长,继而求得答案.
试题解析:
(1)证明:连接OA,
![]()
∵BC是⊙O的直径,
∴∠BAC=90°,
∴∠C+∠B=90°,
∵AD⊥BC,
∴∠B+∠BAD=90°,
∴∠BAD=∠C,
∵OA=OC,
∴∠OAC=∠C,
∴∠BAD=∠OAC,
∵F是弧BC中点,
∴∠BAF=∠CAF,
∴∠DAE=∠OAE,
即AE平分∠DAO;
(2)解:连接OF,
![]()
∵∠BOF=2∠BAF=∠BAC=90°,
∴OF⊥BC,
∵AD⊥BC,
∴OF∥AD,
∴DE:OE=AD:OF,
∵AB=6,AC=8,
∴BC=AB2+AC2=10,
∴AD=ABAC
BC=4.8,
∴BD=AB2AD2=3.6,
∴OD=OB-BD=5-3.6=1.4,
∴DE:OE=4.8:5=24:25,
∴OE=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B(0,b),点A(a,0)分别在y轴、x轴正半轴上,且满足
+(b2﹣16)2=0. 
(1)求A、B两点的坐标,∠OAB的度数;
(2)如图1,已知H(0,1),在第一象限内存在点G,HG交AB于E,使BE为△BHG的中线,且S△BHE=3,
①求点E到BH的距离;
②求点G的坐标;
(3)如图2,C,D是y轴上两点,且BC=OD,连接AD,过点O作MN⊥AD于点N,交直线AB于点M,连接CM,求∠ADO+∠BCM的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】按图填空,并注明理由.
⑴完成正确的证明:如图,已知AB∥CD,求证:∠BED=∠B+∠D
证明:过E点作EF∥AB(经过直线外一点有且只有一条直线与这条直线平行)
∴∠1= ( )
∵AB∥CD(已知)
∴EF∥CD(如果两条直线与同一直线平行,那么它们也平行)
∴∠2= ( )
又∠BED=∠1+∠2
∴∠BED=∠B+∠D (等量代换).
⑵如图,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
解:因为EF∥AD(已知)
所以∠2=∠3.( )
又因为∠1=∠2,所以∠1=∠3.(等量代换)
所以AB∥ ( )
所以∠BAC+ =180°( ).
又因为∠BAC=70°,所以∠AGD=110°.


图⑴ 图⑵
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数y=kx+b的自变量的取值范围是﹣3≤x≤6,相应函数的取值范围是﹣5≤y≤2,则一次函数的表达式为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度数;
(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列图形中,不是轴对称图形的是 ()
A. 等边三角形 B. 等腰直角三角形 C. 四边形 D. 线段
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=1.25.
(1)求直线AC的解析式.
(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)抛物线y=-x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且△ODE沿DE折叠后点O落在边AB上O/处?

相关试题