【题目】如图,ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为( ) ![]()
A.12
B.15
C.16
D.18
参考答案:
【答案】B
【解析】解:∵四边形ABCD为平行四边形,∠A=120°,
∴∠B=∠D=60°,AB=CD=4,AD=BC=5,
∴六边形AEFCGH的每个内角都是120°,
∴∠BEF=∠BFE=60°,∠DHG=∠DGH=60°,
∴EF=BE=BF=1,HG=HD=DG=2,
∴六边形的周长为:AE+EF+CF+CG+HG+AH=AB+(BC﹣BF)+CD+(AD﹣HD)=4+(5﹣1)+4+(5﹣2)=15,
故选B.
【考点精析】通过灵活运用平行四边形的性质,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(﹣3,3),B(﹣1,1.5),将线段AB向右平移d个单位长度后,点A、B恰好同时落在反比例函数y=
(x>0)的图象上,则d等于( )
A.3
B.4
C.5
D.6 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠AOB=∠BOC=∠COD,下列结论中错误的是( )

A. OB、OC分别平分
、
B.

C.

D.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=
BC,连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知EF//AD, ∠1=∠2, ∠BAC=70°.求∠AGD的度数(将以下过程填写完整)

解:∵EF//AD
∴∠2=
又∵∠1=∠2
∴∠1=∠3
∴ AB//
∴∠BAC+ =180°.
又∵∠BAC=70°
∴∠AGD= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是( )

A. 4≥x>2.4 B. 4≥x≥2.4 C. 4>x>2.4 D. 4>x≥2.4
相关试题