【题目】如图所示.在△ABC中,∠ACB=90°,AC=BC,过点C任作一直线PQ,过点A作
于点M,过点B作BN
PQ于点N.
![]()
(1)如图①,当M、N在△ABC的外部时,MN、AM、BN有什么关系呢?为什么?
(2)如图②,当M、N在△ABC的内部时,(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请指出MN与AM、BN之间的数关系并说明理由.
参考答案:
【答案】(1)MN=AM+BN,理由见解析;
(2)(1)中的结论不成立,MN与AM、BN之间的数量关系为MN=AM-BN.理由见解析.
【解析】
(1)先证明∠MAC=∠NCB,根据“AAS”证明△ACM≌△CBN,得出AM=CN,CM=BN,则MN=MC+CN=AM+BN;
(2)与(1)证明方法一样可得到△ACM≌△CBN,得出AM=CN,CM=BN,故MN=CN-CM=AM-BN.
(1)MN=AM+BN,理由是:
∵AM⊥PQ于M,过B作BN⊥PQ于N,
∴∠AMC=∠CNB=90°,
∴∠MAC+∠ACM=90°,
∵∠ACB=90°,
∴∠ACM+∠NCB=90°,
∴∠MAC=∠NCB,
∵在△ACM和△CBN中
![]()
∴△ACM≌△CBN(AAS),
∴AM=CN,CM=BN,
∴MN=MC+CN=AM+BN;
即MN=AM+BN;
(2)(1)中的结论不成立,MN与AM、BN之间的数量关系为MN=AM-BN.理由如下:
∵AM⊥PQ于M,过B作BN⊥PQ于N,
∴∠AMC=∠CNB=90°,
∴∠MAC+∠ACM=90°,
∵∠ACB=90°,
∴∠ACM+∠NCB=90°,
∴∠MAC=∠NCB,
∵在△ACM和△CBN中
![]()
∴△ACM≌△CBN(AAS),
∴AM=CN,CM=BN,
∴MN=CN-CM=AM-BN.
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.

(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:
(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;
(3)如图③,若△ABC中,∠ABO=
∠ABC,∠ACO=
∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为 _. -
科目: 来源: 题型:
查看答案和解析>>【题目】某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.

(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.
(2)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某种产品展开图,高为3cm.

(1)求这个产品的体积.
(2)请为厂家设计一种包装纸箱,使每箱能装5件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸的厚度不计,纸箱的表面积尽可能小),求此长方体的表面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=﹣
x2+bx+c的图象经过A(2,0),B(0,﹣6)两点,(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是

A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
相关试题