【题目】如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2
,反比例函数y=
(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为 . ![]()
参考答案:
【答案】(
,
)
【解析】解:如图1, ![]()
∵点D、E是反比例函数y=
(x>0)的图象上的点,
∴设点D的坐标是(m,
),点E的坐标是(n,
),
又∵∠BCA=90°,AC=BC=2
,
∴C(n,0),B(n,2
),A(n﹣2
,0),
设直线AB的解析式是:y=ax+b,
则
解得
∴直线AB的解析式是:y=x+2
﹣n.
又∵△BDE∽△BCA,
∴∠BDE=∠BCA=90°,
∴直线y=x与直线DE垂直,
∴点D、E关于直线y=x对称,
∴
=
,
∴mn=3,或m+n=0(舍去),
又∵点D在直线AB上,
∴
=m+2
﹣n,mn=3,
整理,可得
2n2﹣2
n﹣3=0,
解得n=
或n=﹣
(舍去),
∴点E的坐标是(
,
).
所以答案是:(
,
).
【考点精析】本题主要考查了相似三角形的判定与性质的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AE是半圆O的直径,弦AB=BC=4
,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )

A.2.3
B.2.4
C.2.5
D.2.6 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,点D是BC边上一动点,点E,F分别在AB,AC边上,连接AD,DE,DF,且∠ADE=∠ADF=60°.
小明通过观察、实验,提出猜想:在点D运动的过程中,始终有AE=AF,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:利用AD是∠EDF的角平分线,构造△ADF的全等三角形,然后通过等腰三角形的相关知识获证.
想法2:利用AD是∠EDF的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.
想法3:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证.
请你参考上面的想法,帮助小明证明AE=AF.(一种方法即可)

-
科目: 来源: 题型:
查看答案和解析>>【题目】天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A,B之间的距离(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)写出点A、B的坐标;
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,写出A′B′C′的三个顶点坐标;
(3)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )

A.小明中途休息用了20分钟
B.小明休息前爬山的平均速度为每分钟70米
C.小明在上述过程中所走的路程为6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
相关试题