【题目】如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.
(1)求证:△ABG≌△AFG;
(2)求GC的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)3.
【解析】
(1)根据翻折的性质可得AF=AB,∠AFG=90°,然后利用“HL”证明 Rt△ABG和Rt△AFG全等即可;
(2)先求出DE、CE的长,从而得到EF,设BG=x,然后表示出GF,再求出CG、EG的长,然后在Rt△CEG中,利用勾股定理列式求出x的值,继而则可求得CG的长.
(1)在正方形ABCD中,AD=AB,∠D=∠B=∠C=90°,
又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G,
∴∠AFG=∠AFE=∠D=90°,AF=AD,
即有∠B=∠AFG=90°,AB=AF,AG=AG,
在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL);
(2)∵AB=6,点E在边CD上,且CD=3DE,
∴DE=FE=2,CE=4,
不妨设BG=FG=x,(x>0),
则CG=6-x,EG=2+x,
在Rt△CEG中,(2+x)2=42+(6-x)2,
解得x=3,
∴GC=BC-BG=6-3=3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学校准备购进一批排球和篮球,已知1个排球和2个篮球共需320元,3个排球和1个篮球共需360元.
(1)求一个排球和一个篮球的售价各是多少元?
(2)学校准备购进这种排球和篮球共40个,且篮球的数量不少于排球数量的3倍,求最省钱的购买方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AE平分∠BAD交BC于点E.
(1)作CF平分∠BCD交AD于点F(用尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,求证:△ABE≌△CDF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点C为AB上面半圆上一点,点D为AB的下面半圆的中点,连接CD与AB交于点E,延长BA至F,使EF=CF.

(1)求证:CF与⊙O相切;
(2)若DEDC=13,求⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,在平面直角坐标系中,抛物线y=ax2+3x+c与x轴交于A、B两点,与y轴交于点C(0,8),直线l经过原点O,与抛物线的一个交点为D(6,8).

(1)求抛物线的解析式;
(2)抛物线的对称轴与直线l交于点E,点T为x轴上方的抛物线上的一个动点.
①当∠TEC=∠TEO时,求点T的坐标;
②直线BT与y轴交于点P,与直线l交于点Q,当OP=OQ时,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】对于代数式x2-10x+24,下列说法:①它是二次三项式; ②该代数式的值可能等于2017;③分解因式的结果是(x-4)(x-6);④该代数式的值可能小于-1.其中正确的有( )
A.1个
B.2个
C.3 个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】解下列分式方程:
(1)
;(2)
.
相关试题