【题目】如图,
是正方形
的对角线,
.边
在其所在的直线上平移,将通过平移得到的线段记为
,连接
、
,并过点
作
,垂足为
,连接
、
.
(1)请直接写出线段
在平移过程中,四边形
是什么四边形;
(2)请判断
、
之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设
,
,求
与
之间的函数关系式.
![]()
参考答案:
【答案】(1)四边形
是平行四边形;(2)
且
,证明见解析;(3)见解析.
【解析】
(1)根据平移的性质,可得PQ=BC=AD,根据一组对边平行且相等的四边形是平行四边形,可得答案;
(2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQO,根据全等三角形的判定与性质,可得AO与OP的数量关系,根据余角的性质,可得AO与OP的位置关系;
(3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得函数关系式.
(1)根据平移的性质可得,PQ=BC,
∵四边形ABCD是正方形,
∴BC=AD,BC∥AD,
∴PQ=AD,PQ∥AD,
∴四边形
是平行四边形.
(2)
且
.证明如下:
①当
向右平移时,如图,
![]()
∵四边形
是正方形,
∴
,
.
∵
,∴
.
∵
,
∴
,
∴![]()
∴
,
∴
.
在
和
中,
∴
,
∴
,
.
∵
,
∴
,即
.
∴
,
∴
且
.
②当
向左平移时,如图,
![]()
同理可证,
,
∴
,
,
∴
,
∴
,
∴
,
∴
且
.
(3)过点
作
于
.
在
中,
,
∴
.
①当
向右平移时,如图,
![]()
,
∴
.
∵
,
∴
.
②当
向左平移时,如图,
![]()
,
∴
.
∵
.
∴
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.
(1)当参加旅游的人数不超过10人时,人均收费为 元;
(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
中,
,
,直线
经过点
,分别过点
,
作直线
的垂线,垂足分别为点
,
,若
,
,则线段
的长为__________. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将连续的奇数1,3,5,7…按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.
(1)若x=17,则a+b+c+d= .
(2)移动十字框,用x表示a+b+c+d= .
(3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).
(1)求点C的坐标;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.
(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、点A不重合),过点C作AB的垂线交⊙O于点D.连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.
(1)若点E是
的中点,求∠F的度数;(2)求证:BE=2OC;
(3)设AC=x,则当x为何值时BEEF的值最大?最大值是多少?

相关试题