【题目】阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2
=(1+
)2.善于思考的小明进行了以下探索:
设a+b
=(m+n
)2(其中a、b、m、n均为整数),则有a+b
=m2+2n2+2mn
.
∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b
的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b
=
,用含m、n的式子分别表示a、b,得:a=__,b=__;
(2)利用所探索的结论,找一组正整数a、b、m、n填空:__+__
=(___)+__
)2;
(3)若a+4
=
,且a、m、n均为正整数,求a的值?
参考答案:
【答案】 a=m2+3n2 b=2mn 4 2 1 1
【解析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;
(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;
(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.
解:(1)∵a+b
=
,
∴a+b
=m2+3n2+2mn
,
∴a=m2+3n2,b=2mn.
故答案为:m2+3n2,2mn.
(2)设m=1,n=1,
∴a=m2+3n2=4,b=2mn=2.
故答案为4、2、1、1.
(3)由题意,得:
a=m2+3n2,b=2mn
∵4=2mn,且m、n为正整数,
∴m=2,n=1或者m=1,n=2,
∴a=22+3×12=7,或a=12+3×22=13.
“点睛”本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列多项式应提取公因式5a2b的是( )
A.15a2b﹣20a2b2
B.30a2b3﹣15ab4﹣10a3b2
C.10a2b﹣20a2b3+50a4b
D.5a2b4﹣10a3b3+15a4b2 -
科目: 来源: 题型:
查看答案和解析>>【题目】若3x x 1 mx2 nx ,则m n _________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.
请结合图象信息解答下列问题:
(1)直接写出a的值,并求甲车的速度;
(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;
(3)乙车出发多少小时与甲车相距15千米?直接写出答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法不正确的是
A. 某种彩票中奖的概率是
,买1000张该种彩票一定会中奖B. 了解一批电视机的使用寿命适合用抽样调查
C. 若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定
D. 在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )

A.2个
B.3个
C.4个
D.5个 -
科目: 来源: 题型:
查看答案和解析>>【题目】以下说法正确的是( )
A. 各边都相等的多边形是正多边形
B. 到线段两个端点距离相等的点在线段的垂直平分线上
C. 角的平分线就是角的对称轴
D. 形状相同的两个三角形是全等三角形
相关试题