【题目】家乐福超市“端午节”举行有奖促销活动:凡一次性购物满200元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖金依次为48元、40元、32元.一次性购物满200元者,如果不摇奖可返还现金15元.
![]()
(1)摇奖一次,获一等奖的概率是多少?
(2)小明一次性购物满了200元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.
参考答案:
【答案】(1)
;(2) 转转盘划算.
【解析】
(1)找到红色区域的份数占总份数的多少即为获得一等奖的概率,
(2)游戏是否合算,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.
解:(1)整个圆周被分成了16份,红色为1份,
∴获得一等奖的概率为:
,
(2)转转盘:
元,
∵16元>15元,
∴转转盘划算.
-
科目: 来源: 题型:
查看答案和解析>>【题目】星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.

(1)玲玲到达离家最远的地方是什么时间?离家多远?
(2)她何时开始第一次休息?休息了多长时间?
(3)她骑车速度最快是在什么时候?车速多少?
(4)玲玲全程骑车的平均速度是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D,点F为OE的延长线上一点且OC2=OD·OF.
(1)求证:CF为⊙O的切线.
(2)已知DE=2,
.①求⊙O的半径;②求sin∠BAD的值

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数y=
的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A,且点A的横坐标为4.(1)求点A的坐标及一次函数的解析式;
(2)若直线x=2与反比例函数和一次函数的图象分别交于点B、C,求线段BC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.
(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;
(2)如图2,点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;
(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4
a,连接KB并延长交抛物线于点Q,求PQ的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】探索归纳:
(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于______;
(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=______;
(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是______;
(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;
(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;
(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;
Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.

相关试题