【题目】探索归纳:
(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于______;
(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=______;
(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是______;
(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.
![]()
参考答案:
【答案】(1)270°;(2)220°;(3)∠1+∠2=180°+∠A ;(4)∠1+∠2=2∠A,理由见解析
【解析】
(1)先求出∠B+∠C的度数,再根据四边形内角和等于360°,即可求解;
(2)先求出∠B+∠C的度数,再根据四边形内角和等于360°,即可求解;
(3)先用∠A表示出∠B+∠C,再根据四边形内角和等于360°,即可得到结论;
(4)由折叠的性质得∠AFE=∠PFE,∠AEF=∠PEF,结合平角的定义和三角形内角和定理,即可得到结论.
(1)∵△ABC为直角三角形,∠A=90°,
∴∠B+∠C=180°-90°=90°,
∴∠1+∠2=360°-(∠B+∠C)=270°.
故答案是:270°;
(2)∵△ABC中,∠A=40°,
∴∠B+∠C=180°-40°=140°,
∴∠1+∠2=360°-(∠B+∠C)=220°.
故答案是:220°;
(3)猜想:∠1+∠2=180°+∠A,理由如下:
∵△ABC中,∠B+∠C=180°-∠A,
∴∠1+∠2=360°-(∠B+∠C)=360°-(180°-∠A)=180°+∠A.
故答案是:∠1+∠2=180°+∠A;
(4)∠1+∠2=2∠A,理由如下:
∵△EFP是由△EFA折叠得到的,
∴∠AFE=∠PFE,∠AEF=∠PEF,
∴∠1=180°-2∠AFE,∠2=180°-2∠AEF,
∴∠1+∠2=360°-2(∠AFE+∠AEF),
又∵∠AFE+∠AEF=180°-∠A,
∴∠1+∠2=360°-2(180°-∠A)=2∠A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数y=
的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A,且点A的横坐标为4.(1)求点A的坐标及一次函数的解析式;
(2)若直线x=2与反比例函数和一次函数的图象分别交于点B、C,求线段BC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】家乐福超市“端午节”举行有奖促销活动:凡一次性购物满200元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖金依次为48元、40元、32元.一次性购物满200元者,如果不摇奖可返还现金15元.

(1)摇奖一次,获一等奖的概率是多少?
(2)小明一次性购物满了200元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.
(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;
(2)如图2,点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;
(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4
a,连接KB并延长交抛物线于点Q,求PQ的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;
(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;
(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;
Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,若CE=2,连接CF.以下结论:①∠BAF=∠BCF; ②点E到AB的距离是2
; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正确的有()
A. 4个 B. 3个 C. 2个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,Rt△ABC中,∠BAC=90°,AB=5,AC=12,将△ABC沿射线BC方向平移m个单位长度到△DEF,顶点A、B、C分别与D、E、F对应,若以点A、D、E为顶点的三角形是等腰三角形,则m的值是 .

相关试题