【题目】五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同
(1)求甲、乙两种救灾物品每件的价格各是多少元?
(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?
参考答案:
【答案】(1) 甲、乙两种救灾物品每件的价格各是70元、60元;(2) 需筹集资金125000元.
【解析】
试题分析:(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据“用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同”列出方程,求解即可;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据”该爱心组织按照此需求的比例购买这2000件物品”列出方程,求解即可.
试题解析:(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,
根据题意得,
=
,
解得:x=60.
经检验,x=60是原方程的解.
答:甲、乙两种救灾物品每件的价格各是70元、60元;
(2)设甲种物品件数为m件,则乙种物品件数为3m件,
根据题意得,m+3m=2000,
解得m=500,
即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).
答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列方程中,不能用直接开平方法的是( )
A. x2﹣3=0 B. (x﹣1)2﹣4=0 C. x2+2x=0 D. (x﹣1)2=(2x+1)2
-
科目: 来源: 题型:
查看答案和解析>>【题目】某机器零件的设计长度为1000mm,加工图纸标注尺寸为1000±0.5(mm),则合格产品的长度范围应为________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线y=kx+b上有两点A(x1,y1)和点B(x2,y2),且(x1-x2)(y1-y2)<0,则常数k的取值范围是_______________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=
(其中a,b,c是三角形的三边长,p=
,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴p=
=6∴S=
=
=6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9

(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一张长方形桌子的长是150cm,宽是100cm,现在要设计一块长方形桌布,面积是桌面的2倍,且使四周垂下的边宽是xcm.根据题意,得( )
A. (150+x)(100+x)=150×100×2 B. (150+2x)(100+2x)=150×100×2
C. (150+x)(100+x)=150×100 D. 2(150x+100x)=150×100
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABD、△BCE、△ACF都是等边三角形。

(1)试判断四边形ADEF的形状并说明理由.
(2)当△ABC满足_____,四边形ADEF是矩形(不需证明).
(3)当△ABC满足____,四边形ADEF是菱形(不需证明).
(4)当△ABC满足 ,四边形ADEF不存在. (不需证明).
相关试题