【题目】已知任意一个三角形的三个内角的和是180°,如图1,在ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O.
(1)若∠A=70°,求∠BOC的度数;
(2)若∠A=α,求∠BOC的度数;
(3)如图2,若BO、CO分别是∠ABC、∠ACB的三等分线,也就是∠OBC=
∠ABC,∠OCB=
∠ACB,∠A=α,求∠BOC的度数.
![]()
参考答案:
【答案】(1)125°;(2)90°+
;(3)120°+![]()
【解析】
(1)根据三角形的内角和定理求出∠ABC+∠ACB,根据角平分线的定义求出∠OBC+∠OCB,根据三角形内角和定理求出即可;
(2)根据三角形的内角和定理求出∠ABC+∠ACB,根据角平分线的定义求出∠OBC+∠OCB,根据三角形内角和定理求出即可;
(3)根据三角形的内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,根据三角形内角和定理求出即可.
(1)∵∠A=70°,
∴∠ABC+∠ACB=180°-∠A=110°,
∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,
∴∠OBC=
∠ABC,∠OCB=
∠ACB,
∴∠OBC+∠OCB=
(∠ABC+∠ACB)=55°,
∴∠BOC=180°-(∠OBC+∠OCB)=125°;
(2)∵∠A=α,
∴∠ABC+∠ACB=180°-∠A=180°-α,
∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,
∴∠OBC=
∠ABC,∠OCB=
∠ACB,
∴∠OBC+∠OCB=
(∠ABC+∠ACB)=
(180°-α)=90°-
α,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-(90°-
α)=90°+
α;
(3)∵∠A=α,
∴∠ABC+∠ACB=180°-∠A=180°-α,
∵∠OBC=
∠ABC,∠OCB=
∠ACB,
∴∠OBC+∠OCB=
(∠ABC+∠ACB)=
(180°-α)=60°-
α,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-(60°-
α)=120°+
α.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面直角坐标系中有四边形ABCD.
(1)写出四边形ABCD的顶点坐标;
(2)求线段AB的长;
(3)求四边形ABCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.

(1)求证:四边形ABCD是平行四边形
(2)若AC⊥BD,且AB=4,则四边形ABCD的周长为________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的运货情况如下表:
(1)分别求甲、乙两种货车每辆载重多少吨?
(2)现租用该公司3辆甲种货车和5辆乙种货车刚好一次运完这批货物,如果按每吨付运费120元计算,货主应付运费多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:

(1)本次模拟测试共抽取了多少个学生?
(2)将图乙中条形统计图补充完整;
(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图E、F分别在正方形ABCD的边BC、CD上,且∠EAF=45°.
(1)求证:EF=BE+DF;
(2)若线段EF、AB的长分别是方程x2﹣5x+6=0的两个根,求△AEF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,边AB、OA(AB>OA)的长分别是方程x2﹣11x+24=0的两个根,D是AB上的点,且满足
.(1)矩形OABC的面积是 ,周长是 .
(2)求直线OD的解析式;
(3)点P是射线OD上的一个动点,当△PAD是等腰三角形时,求点P的坐标.

相关试题